
Penetrating RF Fingerprinting-based Authentication
with a Generative Adversarial Attack

Samurdhi Karunaratne, Enes Krijestorac, and Danijela Cabric
Electrical and Computer Engineering Department,

University of California, Los Angeles
samurdhi@ucla.edu, enesk@ucla.edu, danijela@ee.ucla.edu

Abstract—Physical layer authentication relies on detecting
unique imperfections in signals transmitted by radio devices to
isolate their fingerprint. Recently, deep learning-based authenti-
cators have increasingly been proposed to classify devices using
these fingerprints, as they achieve higher accuracies compared to
traditional approaches. However, it has been shown in domains
such as computer vision that adding carefully crafted pertur-
bations to legitimate inputs can fool such classifiers. This can
undermine the security provided by the authenticator. Unlike
adversarial attacks applied in other domains, an adversary has no
control over the propagation environment. Therefore, to investi-
gate the severity of this type of attack in wireless communications,
we consider an unauthorized transmitter attempting to have
its signals classified as authorized by a deep learning-based
authenticator. We demonstrate a reinforcement learning-based
attack where the impersonator—using only the authenticator’s
binary authentication decision—distorts its signals in order to
penetrate the system. Extensive simulations and experiments on
a software-defined radio testbed indicate that at appropriate
channel conditions and bounded by a maximum distortion level,
it is possible to fool the authenticator reliably at a success rate
of more than 90% .

Index Terms—Transmitter Identification, Deep Learning, Open
set recognition, authorization, physical layer authentication

I. INTRODUCTION

With the exponential growth of the Internet of Things
(IoT), billions of new wireless devices are being deployed
across the world every year [1]. The sheer number of devices
available means that security systems that authenticate these
devices should become cheaper, more secure and more robust.
While traditional cryptography-based authentication systems
have been the mainstay of wireless authentication, the unique
requirements of IoT devices call for alternative methods that
are sensitive to their computation and power constraints.

Passive Physical Layer Authentication (passive PLA) has
been proposed as a low-overhead authentication method that
requires little to no work on the part of the transmitter [2].
Here, the authenticator uses channel state information and fin-
gerprints due to hardware impairments to identify transmitters.
Recently, research on passive PLA that uses deep learning
techniques has been gaining momentum. Most such techniques
process raw IQ samples from transmitters to extract features
that are used to build classifiers [3]. Since deep learning based

This work was supported in part by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

classifiers tend to extract better features, these approaches have
been shown to outperform others which use handcrafted fea-
tures, reaching markedly higher accuracies [3]. However, there
is an inherent vulnerability of deep learning-based classifiers to
so-called adversarial examples. For example, the existence of
targeted adversarial examples have been pointed out [4]: given
a valid input x, a classifier C and a target t, it is possible to
find an x′ = x+ r such that C(x′) = t and ||r|| is minimized.
In this light, it is critical that deep learning-based PLA systems
be analyzed for their vulnerabilities.

Radio fingerprints are usually considered hard to reproduce
or replay because the replaying device suffers from its own
impairments which disturb the features in the RF fingerprint.
As such, naive replay attacks have limited success; only very
recently has this problem been approached in more methodical
ways. In [5], Generative Adversarial Networks are used to train
a spoofing device. While the method shows promising results,
it relies on being able to place an adversarial receiver near
the authenticating receiver, and only considers the case when
there is one authorized transmitter. In [6], this problem was
investigated in a variety of angles, considering targeted and
untargeted adversarial attacks, where the adversary tries either
to make signals from a target transmitter Ti be recognized as
another specified transmitter Tj (targeted) or be recognized
as any transmitter other than Ti (untargeted). They showed
that spoofing can be done at a high accuracy both when the
full gradients and the activations of the classifier are known;
and only the activations of the final layer are known. We
identify the availability of both these as being practically
unrealistic—the most we can expect from the authenticator is a
binary feedback such as ACK or NACK denoting its decision.
Although such 1-bit feedback is technically compatible with
their approach, its efficacy was not not evaluated in that regard.
Additionally, their approach relies on signals from authorized
transmitters being available to the adversary, and was only
verified through training on offline data.

Inspired by this past work, we explore an adversarial
attack that at most expects a binary feedback from the au-
thenticator; is able to achieve high fooling rates in realistic
channel conditions under a wide range of signal-to-noise ratios
(SNRs); and attacks in real-time through online training. In
this paper, we formulate this problem as a reinforcement
learning problem and propose the use of policy gradient
methods to perform spoofing of transmitters in a wireless

To appear in IEEE International Communications Conference (ICC) 2021

Authorized

Authorized
or not?

T1

T3

T2

Tn

TA

R

Tx

Rx

Impersonator

D(·)

G(·)

Fig. 1: System model considered

network. Our results show that by distorting IQ samples of an
adversarial transmitter—constrained to a maximum distortion
level—before transmission, it is possible to fool a deep-
learning based authenticator with high success rates even at
low SNR and even when the only information available about
the authenticator is a binary feedback received from it.

II. SYSTEM MODEL

We consider a wireless environment in which there are |T |
transmitters T = {T1, T2, . . . , T|T |} which are authorized to
transmit to a single receiver R. R is equipped with a pre-
trained neural network-based authenticator D that uses raw IQ
samples of the received signals to perform a binary authen-
tication decision at the physical layer, denoting whether the
signal under consideration is from an authorized transmitter
or not. There is an adversarial transmitter TA that wants to
gain access to R, and it tries to do this by impersonating one
of the authorized transmitters in T . TA employs a generator G
whose purpose is to distort the complex IQ samples of input
discrete time signal z(t) at TA such that after it is transmitted,
it will be classified as authenticated at D. We assume that D
sends back an authentication decision for each signal received
from any transmitter. TA is also aware of the modulation being
used by transmitters in T . This is visualized in Fig. 1.

In a wireless communication system, there are three main
sources of non-linearities that are imparted on the intended
transmitted signal: if x(t) is the signal at the beginning of
the transmitter chain, the signal at the end of the receiver
chain will be of the form y(t) = fR(fC(fT (x(t)))), where
fR, fC and fT are non-linearities introduced by the receiver
hardware, channel and transmitter hardware respectively. Since
the channel is variable, fC is not a good a fingerprint and since
there is only one receiver (R), fR will effectively be invariable
across all transmitters. Therefore D will be discriminating
transmitters based on fT .

We will try to spoof one of T by only using the feedback
from R. We assume that fC has the same variability for TA

as for transmitters in T . Such an assumption is justifiable if
R— which the impersonator has no control over—implements
channel equalization; or if TA could be placed reasonably
close to T when transmitters in T are close together and
are reasonably far away from R. This ensures that D will
discriminate signals from both TA and T based on fT .

III. PROPOSED SOLUTION

We model this problem as a Markov Decision Process
(MDP). An MDP is characterized by an agent and an envi-
ronment that interact at each discrete time step t, whereby the
agent selects an action at according to a policy π that takes
into account the environment’s state st. In response to at, the
agent receives a numerical reward rt from the environment and
transitions to the next state st+1 [7]. We model G, represented
with a neural network parameterized by θ (weights and biases),
as the policy π of the agent. The action at ∈ R2 such that
at ∼ Gθ(st), is the distorted value of st, and rt is a binary
feedback received from D, which is part of the environment.
The state st can be represented in a number of ways, and will
be discussed later in this section.

Assume the agent has collected a trajectory τ of length
Γ defined as a sequence of states, actions, and rewards,
{s1, a1, r1, s2, a2, r2, . . . , sΓ}. Now, the goal is to tune the
parameters θ of G under the following optimization problem:

maximizeθ Eτ [J |Gθ]
where J =

∑Γ
t=1 γ

trt(st, at, st+1)
(1)

Here J is a metric of the the policy’s performance, which
is simply the cumulative reward of τ discounted by factor
γ. To solve this, we can use a policy gradient method: we
repeatedly estimate the gradient of the expected value of J
with respect to θ and use that to update θ. To estimate the
gradients, we will use a score function gradient estimator.
With the introduction of a baseline b(s) to reduce variance, an
estimate ĝ for ∇θEτ [J] is [8]

∇θEτ [J(τ)] ≈ ĝ =
∑Γ
t=1∇θ logGθ(at|st)

(∑Γ
t′=t rt′γ

t′−t − b(st)
)

(2)

Now, the policy update can be done with any gradient ascent
algorithm (e.g. θ ← θ+εĝ). This can be repeated for a number
of iterations, with a trajectory collected for each iteration, until
G converges to a satisfactory state. This algorithm also allows
for b(s) to be trained along with θ [8].

There are practical considerations when designing rt and st.
For example, depending on the main type of distortion that the
impersonator tries to mimic, different definitions of the state
st can be used.

1) The state is a vector st =
[
Re{z(t)}, Im{z(t)}

]
contain-

ing the real and imaginary part of the most recent IQ
sample of the signal z(t). This is applicable when the
distortion over each sample is independent of the other
samples. For example, the distortion imparted by the
power amplifier in the RF chain will have this property
[9].

2) st is {
[
Re{z(t)}, Im{z(t)}

]
, Ht−1}, where Ht−1 is

the hidden state of G(st−1), when it is modeled as a
recurrent neural network. This state can in theory apply
to any type of non-linearity.

Irrespective of the particular definition of st, at ∼ G(st) is
expected to reflect the distorted value of the most recent IQ
sample; hence, at ∈ R2.

Although a reward rt is required for each at, a signal
transmitted by TA is usually a sequence of Ns complex
symbols (effectively a Ns×2 real vector) and hence a reward
cannot immediately be obtained for each at(t < Γ). So we
set Γ = Ns (i.e. the trajectory length is Ns) and transmit
A = {a1[0]+ja1[1], a2[0]+ja2[1], . . . , aΓ[0]+jaΓ[1]} as the
signal to get the feedback D̂(A) = D(fR(fC(fT (A))). To es-
timate rt from D̂(A), a Monte-Carlo search can be performed
from st until sΓ, using a roll-out policy Gβ [10]. Specifically,
at time t, if we have {s1, a1, r1, s2, a2, r2, . . . , st, at, rt} ∼
Gθ, the rest of the trajectory is sampled from Gβ as
{st+1, at+1, rt+1, . . . , sΓ, aΓ, rΓ} ∼ Gβ to produce a simu-
lated At (note that we have abused notation slightly to use ∼
to denote a trajectory sampled by executing a policy). Then
for any 1 ≤ t ≤ Γ, the reward rt can be written as

rt =

{
1
M

∑M
m=1 D̂(Amt) t < Γ

D̂(A) t = Γ
(3)

where for t < Γ, we have averaged over M Monte-Carlo
(MC) searches due to the stochasticity of Gβ . In this approach
Gβ is periodically updated to be the same as Gθ; however,
considering the large number of MC searches expected to be
run, we can use a faster (and maybe less accurate) function
approximator for Gβ [11].

We now add several optimizations to the method proposed
above. First, to encourage exploration, we introduce entropy-
regularization [12]: the agent gets a bonus reward at each time
step proportional to H(Gθ(·|st)), the entropy of the policy at
that timestep. i.e. J in (1) changes to

J =

Γ∑
t=1

γt
[
rt(st, at, st+1) + βH(Gθ(·|st))

]
(4)

where β is the entropy coefficient (higher β =⇒ more
exploration). Also in practice, the components of a symbol
cannot be distorted arbitrarily, as the decodability of the
signal at the receiver side must be ensured. To integrate this
constraint, we impose an action space limitation (clipping):

at = min(st + ε|st|,max(G(st), st − ε|st|)) (5)

This effectively means that the maximum distortion level
allowed is ε% relative to the input state.

Now we present an algorithm summarizing the proposed
method above, depicted as Algorithm 1. Note that Gθ is
initially trained by using Mean Squared Error (MSE) loss
on a set of signals SA captured from TA, such that at the
beginning there is no distortion (Gθ acts as an autoencoder).
Gβ is initialized to Gθ and updated to Gθ periodically, after
training Gθ for gsteps iterations. This process is repeated for
K steps.

Algorithm 1: Generative adversarial attack with a
cooperative R

Input : Generator policy Gθ roll-out policy Gβ , Set
of signals SA from TA;

Output : Gθ;
1 Initialize Gθ, Gβ ;
2 Pretrain Gθ using MSE on SA;
3 β ← θ;
4 for i = 1, . . . ,K do
5 for g ∈ [1, gsteps] do
6 Generate a sequence

{s1, a1, s2, a2, . . . , sΓ, aΓ} ∼ Gθ;
7 for t = 1, . . . ,Γ do
8 Calculate rt using (3);
9 end

10 Calculate ∇θEτ [J] using (2);
11 Update Gθ using gradient descent;
12 end
13 β ← θ;
14 end

IV. EXPERIMENTAL EVALUATION

This section is divided into three sections: Section IV-A
details the simulation environment and the hardware testbed
used for the evaluation, as well as the choices for different
parameters; Section IV-B presents the neural network archi-
tectures used for D and G; and Section IV-C describes four
experiments conducted and the results obtained.

A. Setup and parameters

The proposed method was first evaluated on a simulated
wireless environment written in Python. Power amplifier non-
linearities fT (·) are modeled by the Volterra Series, fT (zt) =
zt(1 + ψ0|zt|2 + ψ1|zt|4), where ψ0 and ψ1 are coefficients
unique to each transmitter, generated to follow a non-linear
curve. Every transmitted packet of data consisted of com-
pletely random bits. We use QPSK modulation and root-raised-
cosine (RRC) pulse shaping with 0.2 excess bandwidth.

Two channel models were investigated. The first one is a
simple additive-white-gaussian-noise (AWGN) channel. The
second one is a dynamic channel, which includes a set of
more realistic impairments including timing errors, frequency
errors, fading, inter-symbol interference and noise. The timing
error is simulated by interpolating the signal by a factor of
32, choosing a random offset, and then downsampling. The
frequency error is obtained by multiplying the signal with
a complex exponential whose frequency is selected from a
Gaussian distribution with zero mean and 1 kHz standard
deviation. For fading and inter-symbol interference, a 3-tap
channel was used with a Rayleigh coefficient of scale 0.5.

The state definition 2 in Section 3 was used (st is
{
[
Re{z(t)}, Im{z(t)}

]
, Ht−1}). The discount factor γ was set

to 1 (undiscounted). The gradient ascent on θ was done with
the Adam optimizer, with the default configuration provided
in the Keras API for Tensorflow, except that the learning rate
was annealed starting from 0.001 to ensure convergence. We
do not use any baseline function to train the generator, as

Conv [f] (1,1)

Conv [f] (3,2)

Conv [f] (3,2)

Batch Norm

Batch Norm

ReLU

ADD

ReLU

Fig. 2: Residual block [f]

Input [2]

Output [2]

LSTM [100]

Dense [2]

mean variance

Dense [2]

Gaussian Sampling

Fig. 3: Architecture of G

Input [y x 2]

Residual [16]

MaxPool (2,1)

MaxPool (2,1)

Conv [16] (1,1)

Residual [32]

Flatten

Classifier blocks

Feature extractor

Dropout 0.5

Dense [1] (Sigmoid Activ.)

Dense [20] (ReLU Activ.)

Fig. 4: Discriminator classifier
[y]

[256 x 2] [1 x 1]

Discriminator
Classi�er

[256]

I
Q

Fig. 5: Input for a simple chan-
nel

FFT
(Magnitude)

[256 x 2] [256 x 1] [128 x 2] [1 x 1]
Reshape

Discriminator
Classi�er

[128]

I
Q

Fig. 6: Input formats for discriminator architecture

entropy regularization and clipping already allow us to train
the generator successfully. Γ = Ns = 256, β = 1000 and
values for SNR, ε, and |T | were changed in different tests.

Finally, to test our attack on real hardware, we created a
testbed consisting of 8 Analog Devices ADALM Pluto Soft-
ware Defined Radios (SDRs); for convenience of operation, all
were connected to a single computer. 6 SDRs were designated
as authorized transmitters, 1 as an unauthorized transmitter
and the other as the receiver, as shown in Fig. 9a. The Python
module pyadi-iio was used to interface with the SDRs.

B. Neural Network Architectures of G, D

We used a binary discriminator architecture for D, which
has been shown to perform well in [13] for similar transmitter
fingerprinting based classifications. It consists of a feature
extractor consisting of a series of residual blocks with different
numbers of filters, and a classifier block; the architecture of
each type of block is shown in Fig. 4. Note that it produces

a scalar output through a sigmoid activation; when providing
binary feedback, this was thresholded at 0.5 to get a binary
value (1 if greater than 0.5 and 0 otherwise). L2 regularization
was used in the dense layers with weights of either 0.001 or
0.002 to avoid overfitting.

When using a simple channel, the IQ samples of the raw
signal was passed to the discriminator classifier in Fig. 4
without any pre-processing (each signal being a (256 × 2)
vector). However, when using the dynamic channel model,
this approach yielded poor discriminators with high fooling
rates to begin with. So we first calculated the Discrete Fourier
Transform of the raw signal, took the magnitude of the result,
and reshaped it into a 2D signal of (128× 2) before feeding
to the discriminator. This pre-processing stage was chosen
as it has been shown to produce superior results in similar
transmitter fingerprinting based classifications [9]. Fig. 5 and
Fig. 6 depict this pictorially. Note that these input represen-
tations are simply for the sake of experimental evaluation—
the impersonator does not assume prior knowledge of the
mechanism in which IQ samples are used by D.

The architecture of Gθ (and Gβ) is shown in Fig. 3. Follow-
ing the input, an LSTM layer with an output dimensionality
of 100 was used, with the default configuration provided in
Keras. Its outputs were modeled as the mean and the diagonal
covariance of a two dimensional Gaussian distribution (one
dimension each for the I and Q components), which was
sampled to obtain the action, and to find the action probability
(when calculating gradients) and entropy.

C. Results

In this section, we report results of four experiments;
Experiment 1-3 are conducted on the simulated environment
and Experiment 4 is conducted on the hardware testbed.

For Experiment 1, we used a set of 10 authorized trans-
mitters |T | = 10 and a maximum distortion level of ε = 0.2.
Then for five SNR values {5, 10, 15, 20, 25} we evaluated the
fooling rate of D at convergence for both channel models.
The results are shown in Fig. 7a. The dashed lines show
the initial fooling rate; for the simple channel, it starts at
around 7% for low SNR and decreases to near 0% for higher
SNRs. For the dynamic channel, the initial fooling rates are
higher but still less than 10% for even moderately high SNRs.
This shows that the discriminator performs excellently at the
beginning (except for the case of 5 dB SNR for the dynamic
channel). It is clear that even at really low SNR, significant
increases in fooling rate can be achieved, with near 100%
fooling rates being achieved at and above 20 dB SNR for
both types of channels. Although slightly higher fooling rates
are achieved for the dynamic channel at certain SNRs, this
should be put in perspective with the higher initial fooling
rates of the discriminator in the dynamic channel—in fact,
the simple channel gives a higher relative improvement. Fig.
7b denotes the convergence time corresponding to Fig. 7a,
measured by the number of gradient descent updates of G
(number of iterations of the inner-loop of Algorithm 1). As
expected, we see that algorithm converges faster for higher

5 10 15 20 25

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
o

o
lin

g
 R

a
te

(a) Fooling rate for different levels of SNR

5 10 15 20 25

SNR (dB)

0

100

200

300

400

500

600

C
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

n
o

.
o

f
it
e

ra
ti
o

n
s
)

(b) Convergence time for different levels of SNR

Fig. 7: Fooling rate and corresponding convergence time for
different levels of SNR for two channel models

SNRs, except for the jump from 5 dB to 10 dB. This is due
to the fooling rate gain at 5 dB being much smaller than at
10 dB, and hence the algorithm achieving that smaller gain
in a lesser number of iterations. For a practical perspective,
consider the simple channel at 20 dB SNR with convergence
time of roughly 100 iterations. Since each iteration requires
256 feedbacks, we need 25600 feedbacks in total from D.
Although this might seem excessive, assuming the system
environment stays fairly static, we can space-out the attack
say, over 24 hours to reduce suspicion. This means that we
only need a feedback every ≈ 3.4 s, which is several orders
of magnitude larger than a typical packet transmission time
(e.g. 1 ms)—if we do not desire a near 100% fooling rate,
this time-interval can be greatly increased.

In Experiment 2, we wish to evaluate the effect of the
maximum distortion level ε on the fooling rate—specifically,
we seek justification for our intuition that allowing G more
freedom for distortion should allow it to reach higher fooling
rates. Fig. 8 shows the results obtained when the fooling rate
was evaluated for ε ∈ {0.1, 0.2, 0.3, 0.4}, and for the same
T and β as in Experiment 1, but only for the case of a
simple channel. As expected, we see that a higher ε most
certainly allows a higher fooling rate to be achieved and that
a sufficiently high ε allows for near 100% fooling rates. This
means that by limiting ε, we can still launch a successful
attack, while keeping the amount of distortion imparted on

5 10 15 20 25

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
o

o
lin

g
 R

a
te

Fig. 8: Effect of changing ε on the fooling rate at different
SNRs

(a) SDR testbed with
|T | = 6

0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

F
o

o
lin

g
 r

a
te

(b) Effect of changing ε on the fooling
rate

Fig. 9: Experiment conducted to evaluate the effect of chang-
ing ε on the fooling rate. The testbed consisted of 8 ADALM
Pluto SDRs.

the transmitted signals at a controlled level.
We seek to understand a fundamental property of our

algorithm in Experiment 3: is G learning adversarial noise,
or is it somehow learning to replicate the fingerprint of one
of the transmitters in T ? Unlike images where we may
answer this problem with a visual inspection, we try to find
an answer to this question numerically with the following
experiment: first G is allowed to converge on a particular
instance of D, and the signals coming through that G are
tested on several other realizations of D—of different neural
network architectures—trained to discriminate the same set
of authorized transmitters T . If G had actually learned to
replicate RF fingerprints, it should achieve similar fooling
rates irrespective of the particular D it is being tested upon.
To test our hypothesis, we trained 6 different realizations
of D, D = {disc1, disc2, dclass1, dclass2, ova1, ova2}; three
different architectures disc, dclass and ova were used and two
instances each were created from each architecture. disc is the
binary discriminator architecture described in Section IV-B.
dclass and ova are two additional architectures defined and
tested in [13] for RF fingerprinting, both sharing the same

feature extractor given in Fig. 4 and only differing in the
classifier blocks used. dclass consists of a multi-class classifier
having |T |+ 1 outputs; the first |T | outputs correspond to the
authorized transmitters and the last one corresponds to outliers.
ova has a single feature extractor shared across |T | copies of
the binary classifier block in Fig. 4, with the i-th such block
denoting whether the signal is from the i-th transmitter or not.
Table I denotes the fooling rates observed when G was allowed
to attack D = disc1 and signals from TA were tested on each
discriminator in D. This was then repeated with D = disc2. It
is clear that while a G trained on either disc1 or disc2 could
be used to attack the other with practically the same level
of effectiveness, the effectiveness drops significantly when
used against other architectures (albeit a significant increase in
fooling rate). This confirms the hypothesis we set out to test;
that is, G learns to produce adversarial examples and does not
learn actual RF fingerprints in T .

G is train-
ed on

G is tested on
disc1 disc2 dclass1 dclass2 ova1 ova2

disc1 0.999 0.999 0.514 0.552 0.548 0.449
disc2 1 1 0.276 0.893 0.217 0.359

TABLE I: Effectiveness of a G trained on D = disc1 and
D = disc2 on some Ds of different architectures

For Experiment 4, a binary discriminator was trained offline
from a dataset captured on the SDR testbed; each transmitter
took turns repeatedly transmitting the same predefined se-
quence of 256 IQ samples to the receiver, and the signals
received at R were collected for each transmitter. Then the
impersonator started transmitting (authorized transmitters were
inactive), and it was allowed to modify its IQ samples before
transmission according to Algorithm 1, using the feedback
from the receiver. Note that the SDRs were simply used for
over-the-air transmission and reception—all other operations
such as training the attacker and calculating authentication
decisions were done inside the computer. The results obtained,
given in Fig. 9b, closely resembles the trend suggested in
the moderate SNR region in Fig. 8. This means that our
experimental results are consistent with the simulation results.

V. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the feasibility of using policy
gradient methods to penetrate a physical layer wireless au-
thentication system which uses a passive deep-learning based
classifier. We introduced an algorithm that adds carefully
learned perturbations to the IQ samples transmitted by an
adversarial transmitter to fool the authenticator into classifying
it as an authorized transmitter. Experiments on a simulated
wireless environment and an SDR testbed revealed that it is
possible to fool the authenticator at extremely high fooling
rates, using surprisingly little information—namely, a binary
feedback from the authenticator indicating its decision and
the modulation and pulse shaping used by the authorized
transmitters. We also showed that by limiting ε, the distortion
level of the impersonator signals could be kept low while still

reaching a high fooling rate. Furthermore, we provided em-
pirical evidence that our approach in fact produces adversarial
examples and does not replicate the RF fingerprints of the
transmitters.

While we only considered untargeted attacks, the possibility
of launching targeted attacks with this method—where we try
to impersonate a particulay transmitter in T—still remains.
Our approach is also being tested over a wider-variety of D
architectures and more challenging channel conditions. In a
future work, we expect to present an algorithm for the case
when R is non-cooperative (it does not provide feedback
endlessly), where an adversarial receiver is used instead to
aid the impersonator. Conversely, we also expect to evaluate
the possible defenses that can be put in place against these
types of attacks, both proactively and reactively.

ACKNOWLEDGMENTS

We wish to thank Samer Hanna (UCLA) for help in imple-
menting the wireless system of the simulation environment.

REFERENCES

[1] Statista, Number of IoT devices 2015-2025, 2020 (accessed
October 30, 2020). https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/.

[2] W. Wang, Z. Sun, S. Piao, B. Zhu, and K. Ren, “Wireless Physical-
Layer Identification: Modeling and Validation,” IEEE Transactions on
Information Forensics and Security, vol. 11, pp. 2091–2106, Sept. 2016.

[3] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep Learning
Convolutional Neural Networks for Radio Identification,” IEEE Com-
munications Magazine, vol. 56, pp. 146–152, Sept. 2018.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations, 2014.

[5] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial
network for wireless signal spoofing,” in Proceedings of the ACM
Workshop on Wireless Security and Machine Learning, pp. 55–60, 2019.

[6] F. Restuccia, S. D’Oro, A. Al-Shawabka, B. C. Rendon, K. Chowdhury,
S. Ioannidis, and T. Melodia, “Hacking the Waveform: Generalized
Wireless Adversarial Deep Learning,” arXiv:2005.02270 [cs, eess], May
2020. arXiv: 2005.02270 version: 1.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction.
Adaptive computation and machine learning series, Cambridge, Mas-
sachusetts: The MIT Press, second edition ed., 2018.

[8] J. Schulman, Optimizing Expectations: From Deep Reinforcement Learn-
ing to Stochastic Computation Graphs. PhD thesis, EECS Department,
University of California, Berkeley, Dec 2016.

[9] S. S. Hanna and D. Cabric, “Deep learning based transmitter iden-
tification using power amplifier nonlinearity,” in 2019 International
Conference on Computing, Networking and Communications (ICNC),
pp. 674–680, IEEE, 2019.

[10] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–489, Jan. 2016.

[12] Z. Ahmed, N. Le Roux, M. Norouzi, and D. Schuurmans, “Under-
standing the impact of entropy on policy optimization,” vol. 97 of
Proceedings of Machine Learning Research, (Long Beach, California,
USA), pp. 151–160, PMLR, 09–15 Jun 2019.

[13] S. Hanna, S. Karunaratne, and D. Cabric, “Deep Learning Approaches
for Open Set Wireless Transmitter Authorization,” in 2020 IEEE 21st
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pp. 1–5, May 2020. ISSN: 1948-3252.

