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Abstract—In this paper, we propose a new concept of a
knowledge management framework to enable a self-optimizing
and self-learning for wireless system operation in real time.
The framework encapsulates both environment and intelligent
agent to reach optimal operation through sensing, perception,
reasoning, and learning in a truly autonomous fashion. The agent
derives adequate knowledge from previous actions improving the
quality of future decisions. Domain experience was provided to
guide the agent while exploring and exploiting the set of possible
actions in the environment. Thus, it guarantees low-cost learning
and achieves a near-optimal network configuration addressing
the non-deterministic polynomial-time hardness problem of joint
channel and location optimization in a wireless system. Exten-
sive simulations are run to validate its fast convergence, high
throughput, and resilience to dynamic interference conditions. We
deploy the framework on off-the-shelf wireless devices to propose
autonomous self-optimization with knowledge management.

Index Terms—Artificial intelligence, learning, wireless.

I. INTRODUCTION

Wireless self-organizing network (Wi-SON) has been pro-
posed to pro-actively address different optimization challenges
such as channel assignment, coverage, user control, etc., in
dense deployments [1]. In essence, Wi-SON is monitoring
network performance and calculating an optimal configura-
tion to determine a new recommendation policy on single
or clustered access points (APs). This method, however, is
deemed sub-optimal as it overlooks both internal and external
network dependencies. The internal dependency refers to the
relation between configurations of the AP, extender (EXT) and
user terminal set (e.g. the optimally of channel assignment
depends on the location of AP, extender and end user). The
external dependency appears in multi-operator multi-access
deployments [2] due to the stochastic changes of neighbor
configurations adopting the same or overlapping channels.
While most efforts in SON literature [3], [4], [5] have been
directed to define cost functions with deterministic (rule-
based) optimization schemes, the above dependencies have to
be explicitly addressed.

Existing multi-hop optimization strategies does not explore
neighbouring information of the non-managed wireless sys-
tem, ignore real-time performance tracking, and does not
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leverage the observed impact of previous actions while de-
riving future decisions. In contrast, artificial intelligence (AI)
methodology, sensing, reasoning, active learning, and knowl-
edge management, should be considered to enable wireless
systems with learning and sophisticated decision-making [6].
To that end, we envision a truly autonomous wireless network
that is capable of sensing and perceiving its neighborhood to
learn network dependencies, build the necessary knowledge
and enable its constituent nodes to reason out the optimal
configuration [4]. Such a design leads to the self-sensing, self-
optimizing and self-learning (self-X) space that allows nodes
to adapt its goals based on sensed user activities.

In this work1, a knowledge management framework by
means of AI methodology is presented to support the au-
tonomous operation. The framework enables wireless sys-
tems to capture insights on its own and its environment
evolution. We demonstrate efficient convergence times, and
verify its superiority over the state-of-the-art, before portraying
its adaptability to dynamic network conditions. Our main
contributions are as follows:
• We propose an AI methodology inspired optimization

framework with knowledge management called Intel-
ligent Channel Assignment and Location Optimization
(ICALO) that comprises both environment and intelligent
agent. The environment includes managed APs, user
devices, and multi-radio wireless extenders, all modeled
by a directed acyclic graph. The model considers the
correlation between location and channel configurations
to optimize an end-to-end user performance capturing the
states of all links constituting the path from AP to a
user. The intelligent agent perceives the environment by
network parameters and stores them in a knowledge base
(KB) that guides the learning and decision making.

• A guided reinforcement learning (G-RL) approach is
proposed with embedded domain knowledge to achieve
user-aware self-optimization. The agent strikes a balance
between exploration when learning has low cost and
exploitation when network performance is critical. Both
perceived network states and KB are used either to select
or assess new optimal configurations and retain them in
the KB. The agent is aware of the learning cost that

1The preliminary results appeared in our recent work [31].
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interrupts user connectivity, and thus exploits spectral
correlation to transfer knowledge among matching con-
figurations.

• We prove that our problem is NP-hard and introduce
heuristics demonstrating the effectiveness of the so pro-
duced AI-driven self-optimization. The performance is
validated through extensive packet-level ns-3 simulations
and an experiment with commercial off-the-shelf (COTS)
access points (APs) testbed.

This work is the first demonstration of fully AI-driven
operation in simulation and testbed, by means of sensing,
reasoning and active learning, of a wireless system with
knowledge management supporting self-X in real time.

II. RELATED WORKS

One comprehensive survey on channel assignment in multi-
radio wireless mesh networks (WMNs) classifies different
techniques based on the type of decision making, network
dynamics, granularity, communication layers and optimiza-
tion methods [5]. The decision making can be either (i)
centralized—maintaining awareness of the network topology
and state—or (ii) distributed, failing to maintain connectivity.
A dynamic channel assignment, compared to a static one, pro-
vides a robust solution that is aware of configuration changes
due to users’ mobility and reconfiguration of neighboring APs.
The granularity of the channel assignment is defined either
at the link-level or flow-level. The former assigns the same
channel to two nodes to maximize the throughput of their
inter-connecting link. The latter assigns the same channel to
all nodes on the flow from the source to destination. In this
way, end-to-end performance is optimized without exploiting
multi-radios, in which the flow can involve multiple channels
while maintaining connectivity through a common channel
between every two neighboring nodes. In addition, the inter-
dependence such as those between links of the same flow, and
between the radios of the same node, were ignored. Cross-
layer channel assignment (e.g. network, data link and physical)
provides globally optimal performance, but updating routing
tables and channels [10] is practically infeasible with off-the-
shelf devices. In addition, the neighboring interference and
real-time measurements that assess network connectivity are
overlooked.

The reinforcement learning scheme in [8]—designed for
sensor networks—adopted random exploration and simple
reward exploitation. This can be sufficient for the consid-
ered radio and power selection problem under the foreseen
slow dynamics. However, channel assignment and learning
in multi-radio WMNs comprise more states and dynamics
which slow down the convergence of purely random ex-
ploration and impact the optimal reward functions that do
not exploit problem structure. In [9], an Adaptive Dynamic
Channel Allocation (ADCA) algorithm was proposed to pick
the configuration that maximizes throughput and minimizes
the delay. Every two neighboring nodes negotiate to select
their common link channel that maximizes the throughput.
However, the algorithm might perform sub-optimally in the
case of saturated traffic and also overlooks neighboring non-
managed interference (external interference).

Finally, there are optimization techniques adopting graph
coloring, integer linear programming (ILP) or meta-heuristic
techniques [12], [11]. The primary drawback of graph-coloring
is its sensitivity to centralized knowledge, which usually fails
to capture the granularity of inter-AP interference in non-
managed scenarios. Although ILP techniques can reach glob-
ally optimal channel assignments, they fail to obtain real-time
solutions in dynamic environments, and hence is not resilient.
On the contrary, meta-heuristic techniques can provide near-
optimal channel assignments that cope with dynamic environ-
ments, but their performance was not tested in non-managed
environments. Genetic Algorithm [11] and Tabu search [12]
are considered as quasi-static searching algorithms, but they
do not provide good performance in dynamic non-managed
environments. CLICA [13] provides a channel assignment that
guarantees connectivity and low inter-channel interference, but
it also is not designed to handle external interference in non-
managed environments. The methodology for self-deployment
was presented to increase the chance of reaching an optimal
position of extenders at low searching and learning costs in
[14].

A. Challenges in Practice
The channel assignment schemes above neglect the follow-

ing practical aspects:
1) Neighbouring network interference: As a CSMA-based

system, a target wireless station suffers from both exposed-
node and hidden-node problems. The former refers to the
contention due to neighboring nodes with high received power,
operating on overlapping channels—causing busy channels
and delaying transmissions. On the contrary, hidden nodes
will cause packet collision at the receiver due to the mutual
transmission of stations outside the sensing range of each
other. However, calculating the exact amount of interference
and/or contention is very challenging, as the traffic profiles of
non-managed neighbors are not readily available and cannot
be directly predicted.

2) Dynamics of re-positioning: While users have the flexi-
bility to re-position extenders, the sources of dynamics should
be extended beyond user devices to include extender locations
as well. Thus, a natural need arises for dynamic optimization
approaches to cope with the evolution in network topology,
user association, and radio conditions. Such approaches should
jointly solve for both channel and location of extenders to
avoid positions where channel assignment is very challenging
(e.g. due to excessive contention), possibly where no channel
assignment is likely to offer satisfactory end-user experience.
Additionally, it will mitigate the burden of moving the ex-
tender from an optimal location because of a poor channel
configuration.

3) Learning Cost: Both neighboring interference and net-
work dynamics are captured through measurements performed
by APs and extenders, and thus typically require channel
switching and extender re-positioning. Both, however, will
increase the learning cost due to the service downtime due
to the re-association process, and the physical movement to
re-position the extender. Ignoring this cost will result in poor
customer experience and increased user complaints.
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B. Motivation for AI

Figure 1 illustrates a laboratory experiment of a 2-hop
WMN with a single user connected to an AP through one
extender placed within a very busy office environment (i.e.
surrounded by a lot of non-managed neighboring APs). Both,
AP and the extender are equipped with two 2.4 GHz radios. We
denote the link between AP and extender by backhaul, while
the link between a user device and extender by fronthaul. Here,
the end-user throughput is determined by the minimum of the
backhaul and fronthaul throughput as R(l)

u = min(R
(l)
b , R

(l)
f ).

Thus, to maximize the end-user throughput the one needs to
take into consideration the combinations of both backhaul and
fronthaul achievable throughput values. The throughput at the
backhaul, fronthaul and user device at two different extender
locations l ∈ {l1, l4}, is measured and denoted by R

(l)
b ,

R
(l)
f and R(l)

u = min(R
(l)
b , R

(l)
f ), respectively. At the midway

location l4 between mAP’s location l0 and end-user device
location l2 in Fig. 1), the user throughput R(l)

u is maximized
by selecting the channel combinations 2 and 11 or 2 and
5 for fronthaul and backhaul, respectively. This is indicated
by circles in Fig. 1(a). Such a location is said to be sub-
optimal for the backhaul as it suffers from high interference
and/or low coverage. On the contrary, at location l1, Rb is
optimized over a wide range of channel combinations while
Rf is maximized over a more tighter range of optimal channel
combinations and do not include channels 2 and 11 that were
deemed optimal at the first location. The channel combination
of 6 and 4 for fronthaul and backhaul, respectively, is optimal
when the extender is located at location l1. As such, changing
the location of extender typically alter the possible optimal
channel combinations.

The network should be aware that the deployment is sub-
optimal [14] in the first location (i.e. midway location) and
performance improvement through channel assignment is not
attainable, while the likelihood of reaching an optimal channel
combination is very high in the second location. An unprece-
dented challenge is reducing the cost of learning which was
very high at the first location due to the poor backhaul. As
such, a delay of up to tens of seconds was experienced to
collect backhaul measurements, followed by an extra delay of
a few seconds to re-associate the user with the extender and
the extender with the AP. Addressing these challenges is the
goal of this work.

III. PROBLEM FORMULATION

We consider a multi-radio multi-channel WMN with a sin-
gle master AP (mAP), multiple neighboring APs and wireless
extenders (EXTs) whose locations change over time. The mAP
is a gateway with wired backhaul which provides access to the
Internet, while EXT act as relays to expand the wireless service
region of the mAP. The extender and mAP are equipped with
a number of radio interfaces, where each radio is operating
on a pre-defined channel. The network is serving user devices
that are connected to the mAP either directly or through the
extender.
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(a) Measurements of channel and location coupling.
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fronthaul, respectively.

Fig. 1: Motivation of optimization and placement problem
wireless system with extender.

A. Graph Network Model

We model the network as a directed acyclic graph G =
(V,E), where V is the set of nodes vi and E is the set of
bi-directional links (edges). For the sake of theoretical gener-
alization, the network includes a single mAP, M extenders and
U user devices. vi ∈ V represents either mAP, EXT or user
device, where v0 refers to the mAP, v1, . . . , vM represent the
extenders, and vM+1, . . . , vM+U are user devices. We assume
N available channels and L possible locations for deploying
extenders. We denote the set of radio interfaces for each node
vi by Di, and the set of channels associated to radio-interfaces
by Ci. Further, we denote D as a union of the radio interface

sets, i.e. D =
M⋃
i=0

Di.

We define the kth user path pk = {eij | i, j ∈ [0,M +
U ]; i 6= j} as a set of distinct links eij ∈ E connecting mAP
v0 and the kth user node vk (k ∈ [M + 1,M + U ] denotes
user index). We constrain two successive links eij and enm
in path pk by setting j = n. The set of nodes forming the
links of path pk must contain only one node each with index
0 and index k ≥ M + 1. Thus, each link eij ∈ E comprises
of two nodes vi and vj , where vj is connected to vi and the
latter provides the next hop communication to the mAP. Both
nodes are in the transmission range of each other and they
have at least one common channel assigned to their interfaces
(i.e. Ci ∩ Cj 6= ∅). The connected nodes vi and vj with
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their respective radios d ∈ Di and d
′ ∈ Dj , share the same

operating channels hd and hd′ , respectively. For example, the
link is represented with a triple eij = {vi, vj , hd}. Each node
vi ∈ V (i = [1,M ]) is capable to sense a set of managed and
non-managed neighbors Ni. For any pair of links eij and ekm
we say that eij and ekm are mutual neighbors (and interfere)
if there exists a configuration (vi, vj , vk, vm) such that two of
the four nodes composing eij and ekm belong to different links
and can sense each other. Thus Nij is the set of neighbors of
link eij . Although the neighborhood relationship is symmetric,
i.e. eij ∈ Nkm ⇔ ekm ∈ Nij it does not imply symmetric
interference levels.

B. Objective Formulation

We define the objective function as the total end-to-end user
sum throughput, written as

max
C,L

M+U∑
k=M+1

Rk, (1)

where Rk is defined as the throughput between the end device
and mAP as described in Section IV-A. The optimization
search is done across a set of channels C = {Ci | i = [0,M ]}
and a set of locations L = {li | i = [1,M ]} that lead to
optimal network configuration for each path pk, k = [M +
1,M + U ] as defined in Section IV-A.

The optimization of the objective function is done under the
following constraints:
(a) Finite set of available channels – the set of channels that

can be assigned to any node is N .
(b) Channel-radio relationship – to each radio can be as-

signed only one channel. That is ∀vi ∈ V, card(Ci) =
card(Di), where card(·) denotes the cardinality of a set.

(c) Radio constraints – the number of channels assigned to
one node cannot exceed the number of radios on the node.
That is ∀vi ∈ V, C̄i ≤ D̄i, where ·̄ denotes the number
of distinct elements in a set—which means that the same
channel can be assigned to different radios of vi.

(d) Connectivity – two adjacent nodes vi and vj must have
at least one channel in common Ci ∩ Cj 6= ∅.

C. NP-hardness of Joint Channel and Location Search Prob-
lem

Next, we present the computational hardness property of the
above defined objective function by the following Lemma.
Lemma 1. Joint channel assignment and location optimiza-
tion in WMNs possess the non-deterministic polynomial-time
hardness (NP-hard) property.

Proof of Lemma 1 is given as follows.
Proof: Under the assumption that the location of each

node vi ∈ V is already determined, and given the neighboring
environment, then one sample of our problem can be described
as V = {v0, v1, . . . , vM+U}. We assume E = {eij |
tc(vi, vj) 6= ∅}, where tc(vi, vj) denotes the channel con-
straints matrix for the nodes vi and vj . For example, the chan-
nel constraints matrix contains the connectivity constraints
mentioned above. Defined in such a way, G = (V,E) presents

an instance of an NP-hard coloring problem [27]. An optimal
coloring of G given by C × V → {1, · · · , X(G)} is also an
optimal channel assignment for the set V under the channel
constraints matrix, already given a set of extenders’ locations
and a static environment. Other set of extenders’ locations and
other instances of the environment might result in different
X(G). X(G) denotes the minimal number of colors necessary
to color the nodes of G such that no two adjacent nodes
receive the same color. In the coloring problem, the coloring is
equivalent to channel assignment, thus a color means a channel
index. On the other hand, if G = (V,E) is an instance of
the coloring problem and we let V ′ = {v′0, v′1, . . . , v′M+U}
and tc(v

′
i, v
′
j), where tc(v

′
i, v
′
j) = {0} if {e′ij} ∈ E or

tc(v
′
i, v
′
j) = {} if {e′ij} 6∈ E ({0} denotes non-empty set).

Now, if an optimal channel assignment for V ′ is given by
C ′ × V ′ → {1, · · · ,min(V ′, tc)}, then C ′ is also an optimal
coloring for G, i.e. X(G) = min(V ′, tc) [28]. Here, tc is the
new channel constraint matrix and min(V ′, tc) is a minimum-
order channel assignment for V ′.

Since the formulation of our self-optimization problem is
equivalent to the coloring problem (with constraints of the
static environment and given EXT locations), we deduce that
the defined problem is NP-hard.

We note here that, unlike the coloring problem formulation
given in the proof, our problem considers a fully dynamic
neighboring environment and search for an optimal configu-
ration set of channel and location. Hence, below we present
a heuristic algorithm with guided learning to achieve a near-
optimal configuration.

IV. SELF-OPTIMIZATION FRAMEWORK DESIGN

A key aspect of self-optimization is the autonomy, in which
the network can configure both the mAP and extenders without
manual troubleshooting or instructions by the operator’s help
desk [4]. The network is typically modeled as two main ele-
ments: Environment and Intelligent agent. The former consists
of managed wireless system (master and extender nodes) and
non-managed neighboring APs. Unlike supervise learning [19]
and deep RL [20], we design an agent by the principle of
reinforcement learning (RL) to interact with the environment
by sensing the current state and then, decide upon an action
[21]. The intelligent agent perceives the environment through
a sequence of sensing, reasoning and acting in order to build
its own knowledge and use it in future actions [18]. The agent
evaluates the actions based on a reward, which is a function of
the resultant network state. Thus, good actions, e.g. achieves
the QoS levels, can be reused directly in future when similar
network conditions are sensed, while bad actions, e.g. creates
coverage holes, will be used to refine the searching strategy
of the agent. It stores the perceived states and rewards of each
action in a knowledge base that can be utilized to improve the
quality of future decisions.

The overall architecture of the proposed AI framework is
summarized in Fig. 2, and comprises the environment, the KB
and their interaction with the agent: sensing, perception and
reinforcement-learning.
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Fig. 2: AI inspired self-optimization framework with knowl-
edge management.

A. Sensing

In the sensing stage, the values of physical parameters that
can be used to describe the wireless system may be collected
from the mAP and EXTs (i.e. from each vi ∈ V, i ∈ [0,M ])
through the TR-98/181 protocol for remote management [17]
or through another interface defined by the device software de-
velopment kit. The collected data contains radio-interface level
statistics (e.g., the indices of used channels, Clear Channel
Assessment statistics counters such as channel busy time etc.)
and user-device level statistics (e.g. RSSI, counter values for
total number of re-transmissions, failed packets, sent packets,
sent and received bytes etc.). This information will allow the
agent to perceive the environment, detect its current state and
assess the performed actions. The sensing stage collects the
data from each node with a certain period τ in milliseconds.

System Variables: The system variables are described as
follows:

1) Location-specific RSSI: The Received Signal Strength
Indicator (RSSI) at receiver node vj at location lj from
sink node vi, RSSI

(lj)
ij , is a signal strength in dBm of

beacon frames received on the channel (i.e. defined as
dot11BeaconRssi [15]). RSSI is usually measured during the
reception of the physical (PHY) preamble and its value is
forwarded to the Medium Access Control (MAC) layer in the
RXVECTOR [15]. Beacon’s RSSI may be averaged over time
using a vendor specific smoothing function. In case that the
beacon frame is received by means of multiple receive chains,
the RSSI is averaged in linear domain over all chains. The
RSSI value range is -100 dBm to 40 dBm [15].

2) Channel Busy Time: Channel Busy Time, CBtime
denotes a period in milliseconds during the radio’s lifeline
when the operating channel is sensed as busy. It is measured
during Clear Channel Assessment procedure [15].

3) Link Throughput: We define a throughput of the link
eij at receiver node vj placed at location lj ∈ L, as Rij . The

maximal link throughput is obtained as follows [15]:

Rmax
ij = min [log2 (1 + 10

RSSI
(lj)

ij
+Padjust

10 ),maxBPS]

×maxNSS
PPDU

×NOFDM , (2)

where Padjust is the implementation specific power adjustment
parameter in dBm taking into account potential transmit power
differences between Beacon/Probe response frames to data
frames; maxBPS denotes a maximum number of bits per
second which is equal to: 40/6 if 256-QAM 5/6 modulation
is allowed in the link, 6 if 256-QAM 3/4 modulation is
allowed in the link or to 5 otherwise [15]; maxNSS is
the maximum number of spatial streams; NOFDM denotes
the number of OFDM sub-carriers and PPDU is the dura-
tion of one physical protocol data unit payload symbol in
seconds [15]. The link throughput value is calculated for
transmit and receive modes whose values are stored as an
L DATARATE parameter within TXVECTOR and RXVEC-
TOR primitives [15]. For example, these values can be ob-
tained through Broadband Forum Technical Report (TR)-
181 specification as InternetGatewayDevice.LANDevice.{i}.
WLANConfiguration. {i}.AssociatedDevice.{i}.X BL TxRate
and InternetGatewayDevice.LANDevice.{i}. WLANConfigura-
tion.{i}.AssociatedDevice.{i}.X BL RxRate [17]. The maxi-
mum link throughput is multiplied by the percentage of time
the medium is is sensed as idle at radio interfaces d ∈ Di to
obtain the link throughput given by

Rij = Rmax
ij × (100− u(lj)d ). (3)

where u(lj)d denotes the channel utilization defined next.
4) End-to-end Throughput: Computationally, the end-to-

end throughput of the kth user device is defined as

Rk = min{Rij | eij ∈ pk}. (4)

On the other hand, Rk can be practically estimated as a user
goodput in bits by using transmitted and received bytes by the
user within a measurement period ∆t as

Rk =
(TXBytes+RXBytes)× 8

∆t
, (5)

where TXBytes and RXBytes, respectively, denote the
total number of bytes transmitted and the total number of
bytes received. These values are available through specific
vendor extensions (e.g. statistics counters InternetGatewayDe-
vice.LANDevice.{i}.WLANConfiguration.{i}.AssociatedDevice.
{i}.Stats.BytesSent and InternetGatewayDevice.LANDevice.
{i}.WLANConfiguration.{i}.AssociatedDevice.{i}. Stats.Bytes
Received, respectively). Although the second way to obtain
end-to-end user throughput is more accurate than the first,
it has one drawback since it requires that the user-devices
are always active with the transmitting and receiving data
requests.

B. Perception

The perception phase translates the sensed measurements
from each node vi into system variables (i.e. key perfor-
mance indicators (KPIs)) that identify the network state.
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The performance indicators are calculated for each radio
d ∈ Di of node vi ∈ V, i ∈ [0,M ] based on two successive
sensing samples. By means of real-time network monitoring
of the aforementioned metrics, the perception function detects
when the current configuration becomes sub-optimal, and
sending a signal to the G-RL agent (defined below) to evaluate
the current state of the network. These indicators include:

1) Channel utilization: (in %) at receiver node vj placed
at location lj is calculated at radio interface d within the time
interval τ based on the Clear Channel Assessment statistics of
channel busy time in milliseconds as

ud(lj) =
CBtime(t+ τ)− CBtime(t)

τ
× 100. (6)

2) Activity factor: (in %) at receiver node vj placed at
location lj is calculated based on Clear Channel Assessment
statistics of the channel transmit time (CHTXtime(·)) and chan-
nel receive time (CHRXtime(·)). Each of the above mentioned
Clear Channel Assessment statistics parameters are vendor im-
plementation specific - however, they are calculated based on
different Clear Channel Assessment and PHY states indicators
BUSY, IDLE, TX, RX [15]. Accordingly, the activity factor
is given by

α
(lj)
d =

[
CHRXtime(t+ τ) + CHTXtime(t+ τ)

τ

−CHRXtime(t) + CHTXtime(t)

τ

]
× 100, (7)

where CHRXtime(·) and CHTXtime(·), respectively, denote
the total time in milliseconds that the radio has spent on
receiving data and the total time in milliseconds it has spent
on transmitting data. The values are obtained during the PHY
receive and PHY transmit procedures. CHRXtime(·) is calcu-
lated as summation of the periods between PHY-RXSTART
indication and PHY-RXEND indication, while CHTXtime(·)
is calculated as a summation of the periods between PHY-
TXSTART indication and PHY-TXEND indication [15].

3) Re-transmission rate per user device: (in %) is calcu-
lated based on user-level statistics data as

∆retr,k =
Nretr,k(t+ τ)−Nretr,k(t)

Npack,k(t+ τ)Npack,k(t)
× 100, (8)

where Nretr,k(t) is the total number of retransmis-
sions for the kth user device at time instant t (e.g.
vendor-specific implementation InternetGatewayDevice. LAN-
Device.{i}. WLANConfiguration.{i}. AssociatedDevice.{i}.
X BL TxRetries) and Npack,k(t) is the total number of packets
transmitted out of the interface for the kth user device at time
instant t given by InternetGatewayDevice. LANDevice.{i}.
WLANConfiguration.{i}. AssociatedDevice.{i}. Stats. Pack-
etsSent [17].

4) Error rate per user device: (in %) is calculated as

∆err,k =
Nerr,k(t+ τ)−Nerr,k(t)

Npack,k(t+ τ)−Npack,k(t)
× 100, (9)

where Nerr,k(t) is the total number of inbound failed
packets for the kth user device at time instant t (e.g.

…
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Fig. 3: Knowledge Base Design.

vendor-specific implementation InternetGatewayDevice. LAN-
Device.{i}. WLANConfiguration.{i}. AssociatedDevice.{i}.
Stats. X BL TxFailed).
Remark 1 (Perception). The re-transmissions and error rate
per user device give an insight to the severity of interference
level. High level of interference consequently results in higher
error and re-transmissions rates for the users impacted by the
interference. The channel utilization metric gives an insight
to the contention level, since the activity factor provides
information on how much the radio traffic load contributes
to that contention level. The value of the ratio of the activity
factor to the channel utilization of the channel assigned to the
radio d is used as a perception control variable along with the
channel utilization value to trigger channel optimization. When
this ratio has a very low value and the channel utilization value
is higher than a certain threshold, the perception stage will
detect the current network state as sub-optimal, resulting in an
evaluation of the current state in the network. In order to avoid
false alarms, the perception stage is responsible to correct
values of the activity factor for radios that have connections
among themselves.

For an example, assume that the link eij is formed of two
nodes vi and vj on radio d ∈ Di, where node vi is a parent
node. If the parent node has other connected devices on the
same radio d as node vj , then a high activity factor of the
radio d of the parent node may contribute to a high channel
utilization of the radio d

′
(= d) ∈ Dj at node vj . In case that

the activity factor of radio d
′ ∈ Dj has a very low value, but

its channel utilization value is very high, it will consequently
trigger the channel optimization. We note here that the parent
node mostly contributes to vj’s channel utilization. This is a
false alarm and it is necessary to modify the activity factor of
the radio d

′ ∈ Dj at node vj to the activity factor of radio
d ∈ Di of its parent node.

C. Reinforcement Learning

The guided RL (G-RL) agent utilizes Q-learning to select
the optimal action at each state based on stored reward values
(referred to as Q-values). In essence, the G-RL agent considers
that each node {vi|∀i ∈ [0,M ]} has its own states and
corresponding actions in that state, while the rewards are
derived on the system level. The states, actions and rewards
for each node vi ∈ V, i ∈ [0,M ] are defined as follows:

States (S): Beside channels optimization, G-RL agent aims
to place each node vi at an optimal location. Thus, the state
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s ∈ S of each node will refer to its location li. Each node vi
has L possible locations for deployment and hence L possible
states.

Actions (A): G-RL agent takes two types of actions: channel
configuration A(c) and EXT re-positioning A(l) with action set
A = A(c)∪A(l). Since each node {vi|∀i ∈ [0,M ]} is equipped
with card(Di) radios, we define channel configuration actions
for that node as the set of all possible combinations of the
radios as ac = [hd1

, hd2
, hdcard(Di)

], where |A(c)| = N |Di|

and Di = {d1, d2, ..., dcard(Di)}. On the other hand, each re-
positioning action al ∈ A(l) changes the location of node vi
and results in a state transition. Finally, for each node vi we
define the combined action set a = {ac, al}.

Reward (R): Instantaneous reward at time instant t in the
state s for a selected action a at node vi is calculated by Eq. (5)
as

rt(s, a, vi) =
M+U∑

k=M+1

Rk. (10)

We define the reward at the network level because applying
an action a at node vi impacts performance of whole network.
In temporal difference Q-learning, the cumulative reward
Qt(s, a, vi) is calculated using the previous Q-value and the
instantaneous reward as [21]{

Qt(s, a, vi) := Qt(s, a, vi) + η∆
∆ = rt(s, a, vi) + γmax

∀a∈A
Qt+1(s′, a′, vi)−Qt(s, a, vi)

(11)
where Qt(s, a) is the cumulative reward at state s when action
a is applied at time t. Parameters η and γ, respectively, are the
learning factor and discount rate with values between 0 and
1. η controls the convergence speed of the learning and its
value is gradually decreased in time to achieve convergence.
The discount rate, γ, is used to weight the near-term rewards.
Specifically, as γ approaches 1, the weight of future rewards
is increased.

Policy (π): The selection of action a during a certain state
s is governed by a policy π(a|s). A policy that maximizes the
cumulative reward Qt(·) is denoted as π∗. During the early
stages of learning, when the KB is empty, the G-RL agent
has to explore in order to discover the unknown environment.
Subsequently, the KB is populated and the agent can retrieve
and start exploiting the gained experience to pick an action that
has the highest reward. Finding the optimal trade-off between
exploration and exploitation is very challenging while deriving
the policy, as it impacts both the learning cost and convergence
rate [21].

D. Knowledge Base

The agent applies the following four stages on the KB: 1)
Retrieve the most relevant case, in the KB, to the currently
sensed information; 2) Reuse the retrieved case or relative
experience to solve the sensed problem; 3) Revise the KB by
updating the actions or fitness values of the stored cases; 4)
Retain the new experience (e.g. new case) in the KB to be used
in the future. The proposed framework in Fig. 2 implements
these stages as described in Section V. The knowledge base

stores the three types of tables for each node vi, i ∈ [0,M ]
as shown in Fig. 3.

Perception table: stores all the information related to the
connectivity in the network and the parameters calculated in
the perception phase. For each radio-interface d ∈ Di, this
table stores all the next hop nodes, the used channel hd of each
radio, and the changes in utilization and activity factor denoted
by u(lj)d and α(lj)

d , respectively. With regard to connected users,
the changes in retransmissions and error rates, denoted by
∆retr. and ∆err., respectively, are also stored.

Q-table: this table saves the Q-values for each possible
action a in state s calculated by Eq. 11 [18].

Channel-Location table: the channel utilization of all avail-
able channels N and at all candidate locations L is kept at each
time slot. Entries are set only for channels that were sensed
at a certain location. Otherwise, the entries remain empty.

With such a design of KB, the G-RL agent is aware of
network topology and current status in the wireless system.

V. GUIDED RL AGENT DESIGN

The G-RL agent unifies both learning and autonomous de-
cision making. G-RL agent after applying an action at certain
node vi, checks the nodes that are connected to that node
(radio-table), applies the corresponding actions for those nodes
if it is necessary to keep connectivity (this propagates through
whole wireless system). After configuration of whole wireless
system is done, the agent waits for environment feedback
obtained by sensing and perception blocks. On basis on that
feedback, the agent calculates Q-value for the action it took at
node vi and updates Q-values in Fig. 3 for all actions that this
action of node vi invoked. The main stages of the proposed
method, i.e. ICALO, are summarized in Algorithm 1.
Remark 2 (Exploration/exploitation balance). The agent goal
is to balance between exploring the environment to gain more
information, and exploiting the knowledge base by picking
decisions with a high likelihood to reach the optimal state.
While the user experience during such learning and decision
making processes remains a priority, the G-RL agent has to be
guided by domain experience to minimize the learning cost.
To that end, problem-specific knowledge is used, instead of
random exploitation and exploration, to provide a user-aware
decision at the right time [6]. In essence, the agent explores the
environment when 1) the observed change in the reward values
is insignificant, or 2) the learning cost is low due to the absence
of user traffic. On the contrary, exploitation is applied when
1) large (positive) variations in the reward values are detected,
or 2) interference or contention problems are perceived by
Sensing function as indicated in Fig. 2. During both stages,
the agent is aware of the following domain knowledge:

Spectral Correlation: Overlapping channels in a wireless
system2 will typically have similar utilization factors since
a given channel can be sensed busy due to transmission on
the same or an overlapping channel. Thus, the exploration
stage should pick non-overlapping channels, while overlapping
channels are visited through exploitation.

2Here, we consider 2.4 GHz band, but overlapping in 5 GHz band is
observed by usage of dynamic channel bandwidth (20, 40, 80 and 160 MHz).
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Algorithm 1: Guided VDBE – Softmax Q-Learning
Input : Knowledge Base (Q-table, Perception data

and Channel-Location data);
Output : Action a∗;

1 Define: Max. channel utilization: uthr , max. re-transmission
rate: ∆retr.thr , max. error rate: ∆err.thr , min. signal level:
RSSI ′, and target Q-value: q′;

2 for vi ∈ V do
3 /* Policy 1: select type of action */
4 if RSSI ≤ RSSI ′ OR max(Q) < q′ then
5 a∗ = OptimizeLocation;
6 end
7 /* Policy 2: zero-cost guided exploration */
8 while U == 0 do
9 cold = cinf ;

10 if min(Q) == 0 then

11 Calculate βa =
∑I
i=1

√∑D
d=1(ca,d − ci,d)2 ;

12 a∗ = argmax{βa} ∀a ;
13 end
14 /* All actions are visited before */
15 else
16 a∗ = Random uniform selection ;
17 end
18 Apply a∗ to cinf ; Sensing and Perception;
19 Update Q-table and Channel-Location Table;
20 Switch back cinf = cold;
21 end
22 /* Policy 3: modified soft-max */

23 if ud > uthr&
α

(lj)

d
ud
� 1 OR ∆retr.,r > ∆retr.thr OR

∆err.,r > ∆err.thr then
24 end
25 Calculate ε(s) using Eq. 21
26 if Uniform(0, 1) ≤ ε(s) then
27 ρ(s, a) = min{ρo(s, a), ρu(s, a)} ;
28 ρmax = max(ρ(s, a)) ;
29 ρmin = 0.9× ρmax ;
30 Calculate Euclidean distance for each action a

versus current action iff ρ(s, a) > ρmin and
multiply it with channel diversity factor of action
a, i.e. calculate factor κa ;

31 a∗ = argmax {κ} ;
32 end
33 else
34 Qmax = max(Q(s, a)) ;
35 Qmin = 0.85 ∗Qmax;
36 Calculate Euclidean distance for each action a

versus current action iff Q(s, a) > Qmin and
multiply it with channel diversity factor of action
a, i.e. calculate factor κa ;

37 a∗ = argmax {κ} ;
38 end
39 /* Policy 4: Decision Making - Control Stage */
40 if Q(s, a∗) = 0 OR

Q(s, a∗)! = 0&Q(s, a∗) > 1.15 ∗ qcurr then
41 apply action a∗

42 end
43 else
44 keep current configuration a∗ = NULL
45 end
46 Update cumulative reward Q-value using Eq. 11;
47 end
48 return a∗

Spatial Correlation: A wireless system that is typically
suffering from a coverage problem can not be optimized by
re-configuring the channels, and thus prompts a change in the
location of nodes (i.e. re-positioning EXTs). As such, identify-
ing the coverage problem from contention and interference will
help the agent to exclude channel configuration from the set
of possible actions, and thus accelerate the learning process.

The algorithm is detailed as follows.

A. Selecting the Type of Action

The first decision performed by the agent is to leverage
the perception stage to decide either to explore or exploit.
Using the perception data, the agent monitors the system
performance by checking the changes in contention, inter-
ference and coverage levels at current extender location. In
particular, the RSSI value on EXT’s backhaul (connecting
EXT to mAP) is assessed versus a minimal threshold RSSI ′

that achieves the target signal quality at the extender if the
channel is optimized (Lines 4-6). In the case of poor coverage,
channel exploration at such a location is unnecessary and thus
a re-positioning action must be selected. For instance, at poor
coverage locations the throughput is already low and channel
optimization cannot improve the throughput – time wasting to
learn at those locations. The new location is calculated as the
midway between the current position of the extender and the
next hop towards the mAP. If this location was visited before,
then a random distance is added to the calculated midway
location to provide exploration. The new location is stored in
the channel-location table in Fig. 3 with the corresponding
channel utilization of the last channel configuration.

In case of high signal level, i.e. no coverage problem, the
agent should explore and exploit using the channel configura-
tion actions until no improvement is observed, and then a new
location is selected (Lines 4-6).

B. Zero-Cost Knowledge-Driven Exploration

The second policy performs greedy exploration, yet with
zero learning cost, since it is followed in one of the cases:

1) No users (i.e. U = 0 in Line 8 of Algorithm 1) are
actively associated or

2) Users are connected but not requesting traffic (Line 8).
In particular, the agent will pick a channel configuration action,
compute its reward value and store the cumulative reward in
the Q-table (Lines 10-12) to maximize the gained knowledge.
As such, for every possible action that is not applied before
(i.e. with zero reward value in Q-table), the total Euclidean
distance, to all previously visited actions, is calculated by βa
as a sum of Euclidean distances between action a and the all
previously applied actions given by upper limit of I stored in
the Q-table as indicated in Line 11 of Algorithm 1. Here, ca,d
is the channel configuration of radio d when applying action
a. The optimal action, from the exploration perspective, is the
one with maximum total Euclidean distance.

In particular, the agent checks for the number of connected
users and their total amount of traffic to explore the set of
actions (Lines 8-21). If no traffic is requested from the users,
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the agent decides to explore the environment by switching the
radio to a channel that was not explored before (i.e. with no
entry in the Q-table) or has low likelihood value calculated by
(11). In the case that all actions are visited (i.e. no zero entries
in the Q-table), a random action is picked from the Q-table
using a uniform distribution (Lines 14-16). This exploration
process is repeated for every node {vi|∀i ∈ [0,M ]} until a
connection or traffic request is received from a user device. By
doing so, the G-RL agent accelerates the learning process of its
environment without the degradation of user experience. After
the agent applies this exploration action, the corresponding
Q-value is updated in KB, and the channel configuration is
switched back to the former value (Line 20).

C. Exploiting Spectral Correlation

There are two basic methods for balancing exploration
and exploitation: ε-greedy and Softmax, each with its own
drawbacks [21]. Having said that, we adopted a strategy for
policy proposed in [24], named as Value-Difference Based
Exploration combined with Softmax action selection (VDBE
– Softmax). The reasons are twofold: VDBE-Softmax selects
the exploration actions only in situations when the knowledge
about the environment is uncertain, indicated by fluctuations in
Q-values during learning, and the second reason that the policy
can outperform ε-greedy, Softmax and VDBE policies in
combination with on-policy and off-policy learning algorithms
such as Q-learning.

In the case of perceiving interference or contention problems
(i.e. at least one condition is satisfied in Line 23), the third
policy is triggered (Lines 24-38). The policy is jointly defined
based on knowledge management (with KB), VDBE–Softmax
[24] and spectral correlation. We mention here that by sensing
RL agent has some knowledge about its environment, which
is stored in Channel-Location table and Radio-table of each
node vi ∈ V, i ∈ [0,M ]. By utilizing this knowledge, RL agent
modifies action probabilities, so the proposed action selection
policy is given as

π(s) =

{
ρ(s, a) ξ < ε(s)
arg max
∀a∈A(s)

Q(s, a) otherwise, (12)

where ρ(s, a) and ξ, respectively, denote the G-RL action
selection policy described in Section V-C1 and a uniform
random number over the interval [0, 1]. The ε(s) is a state-
dependent exploration probability. In essence, a high value of
ε(s) enables the agent to perform guided exploration, while
a low value triggers exploitation by picking the action with
maximum cumulative reward (i.e. Q-value).

1) G-RL Action Selection: In the case of ξ < ε(s), the G-
RL agent is in exploration phase. The exploration phase takes
five steps to pick a new action.

First, the G-RL agent calculates for each a ∈ A(s) the
action selection probability

ρ(st = s, at = a, vi) = min
[
ρo(s, a), ρu(s, a)

]
(13)

by using the BSmax probability ρo(s, a) = Pr{at = a|st =
s} and the environment probability ρu(s, a, vi) that takes into
account channel diversity, hidden node impact and contention

impact caused by channel utilization and overlapping channels.
ρo(s, a, vi) is determined by a normalized exponential function
(i.e. Boltzmann distribution) as follows:

ρo(s, a) =
e
Q(s,a)
Temp∑

b∈A(s) e
Q(s,b)
Temp

, (14)

where T is a positive parameter called temperature starting
with a large value and decreases with time. High temperatures
cause all actions to be nearly equiprobable (more exploration),
whereas low temperatures cause greedy action selections
(more exploitation), while ρu(s, a, vi) is determined as follows

ρu(s, a, vi) =
Σ(s, a, vi)

Θ(s, a, vi) + Ξ(s, a, vi) + ∆(s, a, vi)
. (15)

In the above expression, Σ(s, a, vi) denotes the impact of
channel diversity given as

Σ(s, a, vi) = 1 +
∑
d∈Di

∑
d′∈Di,d6=d′

|hd − hd′ |, (16)

where hd denotes the selected channel for the given link ei,j
within the action set ac. This sensor gives a higher weight
to actions with operating channels having larger separation,
and vice versa. This means that the action with the same
channel tuned on all radio interfaces has the lowest probability
of self-interference due to multiple radio interfaces per device.
Θ(s, a, vi) denotes an observed channel utilization on the node
vi for all radios given as

Θ(s, a, vi) =
∑
d∈Di

ulihd . (17)

Ξ(s, a, vi) denotes the impact of hidden nodes and is defined
as the difference between channel utilization observed on both
sides of links that contains node vi, multiplied by a factor 100,
as

Ξ(s, a, vi) =
∑

j,eij∈E
|ulihd − u

lj
hd
| × 100. (18)

Finally, ∆(s, a, vi) denotes the impact of interference and
contention from overlapping channels given as

∆(s, a, vi) =

∑
d∈Di

∑
h∈N,|h−hd|65,h6=hd

(5− |h− hd|)u(li)h

50
,

(19)
where h denotes a channel within the set of total number
of available channels defined by N . By experimental studies
the developed heuristics is adopted in Eq. (18) and Eq. (19).
Eq. (19) denotes the contention impact for 2.4 GHz band.
Thus, the constant value of 5 in the numerator of Eq. (19) is a
consequence of the fact that there are only 3 non-overlapping
channels in 2.4 GHz band. The second step is finding the
maximal probability ρmax = max(ρ) and on basis of it
calculating the minimal allowed probability as (assuming 10%
error tolerance to avoid oscillations of action selection).

In the third step, the G-RL agent finds all actions A
′
(s)

for which ρ(s, a, vi) > ρmin. Afterwards, the G-RL agent
calculates κa′ for each a′ as

κa′ =

(
1 +

∑
d∈Di

∑
d′∈Di,d6=d′

|hd,new − hd′ ,new|
)
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×
√∑

d∈Di

(hd,current − hd,new)2, (20)

where hd,new denotes the new channel index which will be
assigned to radio d if action a

′
is applied, while hd,current

denotes the current applied channel index at radio d. The
first factor in the brackets denotes the channel diversity of
the channel configuration defined by channel action a

′
, since

the second denotes Euclidean distance of the channel config-
uration defined by channel action a

′
from the current applied

channel configuration at node vi. If the applied action does
not satisfy perception thresholds, then it is highly likely that
the actions with low Euclidean distance behave in the same
way due to overlapping properties in wireless spectrum. Thus,
the G-RL agent gives a higher probability to actions that have
higher Euclidean distance from the currently applied action.
In the last step, the G-RL agent picks the action a∗ that has
highest κ value.

2) Exploration Probability ε(s): The state-dependent ex-
ploration probability ε(s) is calculated using the difference
in Boltzmann distribution between the last two cumulative
rewards: εt+1(s) = ψ(s)f(s, a, σ) + [1− ψ(s)]εt(s),

f(s, a, σ) = 1−e
−|η∆(s,a)|

σ

1+e
−|η∆(s,a)|

σ

(21)

where σ and ψ ∈ [0, 1], respectively, denote a positive
constant called inverse sensitivity and the influence of the
selected action on the state-dependent exploration probability.
A reasonable setting for ψ(s) is the inverse of the number of
actions in the current state, ψ(s) = 1

|A(s)| , since all actions
should contribute equally to ε(s). The parameter σ influences
ε(s) in a way that low values cause full exploration at small
value changes while high values of σ cause a high level of
exploration only at large value changes.

D. Decision Making - Control of Convergence

After a new action is found, ICALO checks whether it
knows anything about this action, i.e. whether the Q-value for
this action is different from zero (Lines 40-45). In the case that
Q-value is equal to zero, ICALO will apply the new action.
Otherwise, it checks whether the Q-value of the new action
is 15% higher than the Q-value of currently applied action.
This is because it is not worth applying a new action if it
brings only a small improvement. By controlling the execution
of actions in such a way, ICALO alleviates the issue of the
network oscillating between the same states.
Remark 3 (Convergence Analysis). Q-learning has been well
studied in the literature and, under mild assumptions, has been
proven to converge to the desired optimal solution [22]. The
original Q-learning algorithm uses a stochastic iterative update
to determine the optimal Q-values [21]. The update-rule for Q-
learning is given by Eq. (11). We consider the entire wireless
network as a single RL-agent, while the reward is calculated on
the network level. Due to multiple extenders in the neighboring
environment an action is applied by G-RL agent taking into
account the entire network state. In that way, the correlation
among multiple extenders is taken into consideration. Since

there are a finite set of actions (available channels and limited
number of locations) and a finite set of states (we are assuming
that number of locations is limited), G-RL agent converges
to optimal (steady-state) point as illustrated in the following
section. However, we note here that the optimality point may
change with the dynamics of the environment. In dynamic
environment, general RL-agent suffers from oscillations and
it fails to converge [21]. In order to provide the convergence
of G-RL agent, we exploited both the spatial and spectral
correlations, while further oscillations are reduced by the
decision control policy (i.e. Lines 40-42 in Algorithm 1). For
two-hops network in dynamic environment, we proved.

VI. PERFORMANCE EVALUATION

In this section, we first describe the simulation results with
network simulator ns-3 and then, the experimental results are
presented.

A. Network Simulator ns-3

To evaluate the proposed framework, we use the IEEE
802.11 compliant discrete-event network simulator ns-3. We
consider scenarios where there is the mAP in conjunction
with a single EXT and a variable number of client devices.
The EXT is modeled as a node that has two radios—one,
an adhoc mode interface that is used to establish backhaul
communication with the mAP, and the second, an AP mode
interface that is used to allow client devices to associate. All
subsequent tests were carried out with all the radios operating
on the 2.4 GHz band and a channel width of 20 MHz. Packet
size is set to 1000 bytes and transmission power of all radios
is 12 dBm. SNR based ideal rate adaptation is used and the
MAC protocol is IEEE 802.11.

In each test, we transmit a Constant Bit Rate (CBR) UDP
data stream of 5 Mbps from the mAP to each of the client
devices, and the ICALO parameters are set as: εEXT (0) = 1,
εmAP (0) = 1, Temp = 50, σ = 100, ψEXT = 1

121 ,
ψmAP = 1

11 , η = 0.7, γ = 0, τ = 2, uthr = 60(%),
RSSI ′ = −60 dBm, ∆err. = 0.005%, ∆retr. = 50%. The
network area considered is size of 20×10 meters. All the
nodes of our network (mAP, EXT and client devices) are
placed within this area. For the purpose of this simulation,
we consider an apartment consisting of 8 rooms as given in
Fig. 4(a). Additionally, APs belonging to neighboring external
networks may be placed outside of this network area. In
all tests, every node (internal or external) was placed in an
enclosing area of 30 m × 20 m. Note that all interfering
external APs transmit at a rate of 5 Mbps to an associated
node placed outside the apartment.

We divide the testing process into three phases to high-
light different aspects of our approach: 1) Speed of conver-
gence to near-optimal throughput; 2) Comparison of steady-
state throughput to other channel-assignment schemes; 3)
Resilience to dynamic network conditions.

1) Speed of convergence to near-optimal throughput:
ICALO takes time in trying out different channel assignments
and locations before arriving at a final state (steady-state).
Therefore, it is important to understand how the network
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throughput will be affected during this period. In this exper-
iment, we try to demonstrate this behavior of ICALO and
more importantly, its speed of convergence to the steady-state
throughput. Short time periods for channel switching and re-
positioning are not considered in the analysis of results as they
make no effect on the convergence behavior (other than act as
small delays).

We consider a family of five living in the apartment, three
in the living room and two in the study. This is visualized in
Fig. 4(a). The mAP and EXT are initially placed as indicated in
Fig. 4(a). Then, we introduce a single external (non-managed)
node to act as external interference to our network. The
fronthaul and backhaul channel of the EXT is initially set
to 2 and 6, respectively. The external AP channel is set to
2. The variation of per-user throughput versus time when
running ICALO in this scenario is given in Fig. 4(b). Here,
we see that the network reaches near-optimal throughput at
its steady-state in around 26 seconds, the convergence time
of ICALO (indicated by the dashed line). Note that this
is just the initial convergence time; as ICALO learns, the
convergence time will drop (see later in Fig. 7(b)). From the
more pronounced peaks and valleys before the dashed line in
Fig. 4(b), we can get an idea of how many changes in the
channel configuration of the EXT occurred before the steady-
state (for this particular arrangement of nodes, there was no
EXT re-positioning suggested by ICALO). The actual number
of channel changes to reach the steady-state was 11.

To get a more general idea on the convergence times and
the number of configuration changes (location changes plus
channel changes) to reach steady-state, we conduct 50 tests
with the same configuration as in Fig. 4(a), except that the
EXT is placed at a random location within the apartment in
each test. The fronthaul and backhaul channels of the EXT is
set to 3 and 7, respectively, while the external AP is in channel
3. We observed that for 90% of tests, the convergence time
is less than 36 s – all tests converged within 43 seconds. The
mean convergence time was 23.6 s with a standard deviation
of 7.9 s. Analysis of configuration changes until steady-state
revealed that the mean number of configuration changes is 9.4
and that the standard deviation is 2.5. These numbers further
validate what we observed in Fig. 4(b).

2) Comparison of steady-state achievable throughput: We
compare the steady-state throughput of ICALO with that of
three other channel assignment approaches – namely single
channel assignment, Common Channel Assignment (CCA)
[13] and Connected Low Interference Channel Assignment
(CLICA) [29] for two different scenarios. In each scenario,
we place the client devices in a constant arrangement of
locations, and randomly change the initial position of the EXT
50 times and measure the steady-state per-user throughput of
ICALO along with that of the other approaches. Hence, each
experiment consists of 200 tests – 50 for each approach. Note
that within a given experiment, the initial location of the EXT,
the channels of the interfering external APs, and the positions
of the client devices are kept constant, so as to facilitate a fair
comparison.

In each individual test, we assign all possible channels to
the EXT fronthaul and backhaul, and consider the throughput
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(b) Per-user achievable throughput

Fig. 4: Convergence study in dynamic network conditions with
contention.

of the channel that produced the highest throughput as the
throughput for that test. This is to get the best possible
throughput for each test under the constraint of using a single
channel (in single channel assignment, it is to be assumed
that there is a single available channel). The essence of CCA
is to assign the same set of channels for each radio of every
node in a WMN, to have the maximum possible level of inter-
node connectivity while having channel variation to reduce
interference. To get a high throughput under this premise while
maintaining fairness, we assign a random couple of orthogonal
channels to the EXT fronthaul and backhaul in each test.
To construct the conflict graph in CLICA, we consider the
physical model, which assigns edge weights based on the value
of certain network physical parameters as presented in [29]
and originally proposed in [30] (the alternative protocol model
does not capture interference due to overlapping channels).

In both scenarios (Experiment 1 in Fig. 5(a) and Experiment
2 in Fig. 6(a)), we consider congested environment with four
external APs. The respective channels of the external APs in
Experiment 1 are 1, 3, 7, 9, while in the Experiment 2 the
channels of external APs are 1, 2, 4 and 8 (the operating
channel of a external AP is given next to that AP in the
figures). In each of the experiments, the initial position of the
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Fig. 5: Comparison of ICALO with state-of-the-art methods
and pre-defined backhaul interference.

EXT is randomly set within the confines of the apartment. We
place the client devices and the external AP in the positions
as indicated in the figures. The initial channel at the fronthaul
and backhaul of EXT is set to 3 and 7, respectively.

The results of Experiment 1 and Experiment 2 are shown
in Fig. 5(b) and Fig. 6(b), respectively. For each experiment,
the cumulative distribution function (CDF) of the steady-state
throughput of each algorithm is plotted. With the increased and
more complex external interference, the average steady-state
throughput is much less than that of the case of a single inter-
fering channel (Fig. 4(b)). Observing the results in Fig. 5(b)
and Fig. 6(b), as expected the single channel assignment has
the lowest achievable throughput. CCA performs much better
as it eliminates (in our tests) inter-channel interference by
choosing orthogonal channels. However, even in this case, it
has no information about external interference and is inferior
to CLICA. CLICA performs better than both the first two
approaches, and in some cases, matches the performance of
ICALO. But any single formula (as used in CLICA to estimate
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Fig. 6: Comparing ICALO performance with state-of-the-art
and dynamic backhaul interference.

channel conflicts) is unlikely to fully capture both external
and internal interference effects accurately. This is where the
exploratory phase of ICALO comes into effect and results in
increased performance.

Low throughput results of CCA and CLICA in Fig. 5(b) and
Fig. 6(b) were caused in scenarios where the EXT was placed
in locations too far away or too near to the mAP. In such
situations, no channel assignment can recover the degradation
of throughput caused due to the poor location of the EXT.
On the other hand, ICALO was able to alleviate this by re-
positioning the EXT. For example, the lowest throughput for
CCA and CLICA in Experiment 1 is 1.3 Mbps, where the
EXT was initially positioned in location L1 (see Fig. 5) –
clearly a bad location for it considering the locations of client
devices. By initially re-positioning the EXT to location L2,
ICALO was able to eventually obtain about 2× improvement
of steady-state throughput of 2.7 Mbps. This portrays the tight
coupling between channel assignment and location of EXTs
in the goal for throughput enhancement.
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(b) Results of experiment

Fig. 7: Recovery of per-user throughput in dynamic network
conditions by ICALO.

3) Resilience of ICALO to dynamic network conditions:
With the use of wireless enabled devices continuing to grow
at an astronomical rate, any deployment of a new wire-
less network should expect interference from neighboring
external networks. Such scenarios are extremely dynamic –
new devices will get added and existing devices will leave
unpredictably. As such, modern networks should be resilient
in the face of these effects and be able to recover from them
quickly to reach peak performance. ICALO has an advantage
in this respect as it keeps getting better as time passes, and
is able to make smarter, faster decisions based on its ever-
growing knowledge base.

To verify this claim, we simulate the scenario illustrated
in Fig. 7(a): starting with AP1 activated, remove and activate
each of the APs, {AP1, AP2, AP3, AP4} one by one, pausing
for the system to reach a steady-state before removing the
current AP and activating the next. Continuing in this order,
finally only AP4 is left activated. AP1, AP2, AP3andAP4

transmit at channels 3, 10, 4 and 8, respectively. The per-

user achievable throughput variation for this scenario is shown
in Fig. 7(b). The moments at which the system reaches the
steady-state is marked by dot-dashed lines (green) and the
moments at which the current external AP is removed and the
next one is activated are marked by dashed lines (red). It can
be seen clearly from the figure that the network reaches near-
optimal throughput at each stage after successfully recovering
from the decline in throughput due to a sudden change in
the external interference conditions. Note also that successive
convergence time in seconds decreases as 28, 16, 12.5 and
10. This reflects the effect of the growing knowledge base.
Following this pattern, as the system evolves. We can ideally
expect ICALO to make optimal decisions with a little lag.

B. Testbed Evaluation

We practically evaluate the feasibility of the proposed
framework by developing a full prototype. We consider an
experiment with COTS devices running Linux Embedded
Development Environment (LEDE) [25]. For the mAP, we use
a TP-Link Archer 1750AC router with one 2.4 GHz radio con-
figured to operate in two modes—ad-hoc (connecting EXT)
and infrastructure (connecting user devices). The experiment
includes 30 COTS wireless nodes with additional 15 wireless
nodes that are not managed and serve as random interference
and contention generators. We design EXT with two 2.4 GHz
radios by combining two APs (TP-Link Archer 1750AC) in
such a way that LAN interface of one is connected to the WAN
interface of other. One AP operates in ad-hoc mode, while
the other operates in infrastructure mode. Both the mAP and
EXT are having a channel width of 20 MHz. The wireless
repeating mode of Wireless Distribution System (WDS) is
used to connect mAP and EXT. To test in a more challenging
environment, we selected the 2.4 GHz band due to a larger
number of neighbors that are not available on the 5 GHz band.
We equip the EXT with a USB-to-audio adapter and speaker
in order to enable cyber-user interface. By this interface,
ICALO notifies an end-user when to re-position the EXT. At
both the mAP and EXT, we host a part of the sensing logic
which periodically reports network parameters, that is done
by combination of Linux Shell and Python programming. The
logic of the other blocks of ICALO is hosted on a MATLAB
server that uses secure shell (SSH) to push new configurations
to the wireless system.

1) Self-optimization scenario: A validation of ICALO is
done in the non-managed environment with a layout shown
in Fig. 1, where mAP is placed at location l0. The initial
location of EXT is not pre-defined (ICALO will suggest one).
We consider the worst-case scenario with always active users
in single and multi-user scenarios. In case of a single-user
scenario, the user is located at l2 with 2K video demand.
The RSSI from mAP at location l2 is below -75 dBm and
to serve this user, an extender is needed. In single-user
scenario, ICALO firstly optimizes the location of the EXT
and then searches for an optimal channel assignment. With
regards to channel assignment, we compare ICALO (with the
proposed G-RL agent) with an unguided RL (UG-RL) agent.
In both cases, when ICALO or UG-RL agent decides on the
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Loc/Ch 1 2 3 4 5 6 7 8 9 10 11
lmAP - 1e3 38 39 38 50 - 40 74 - 1e3
lEXT 62 1e3 37 37 61 84 71 35 74 44 1e3

TABLE I: Channel - Location table

optimal channel combination, a hidden node is introduced at
the backhaul link to test their responsiveness. In the multi-
user scenario, the mAP and EXT each have two connected
and active user devices. Parameters related to ICALO and
the system are listed as: εEXT (0) = 1, εmAP (0) = 1,
Temp = 50, σ = 100, ψEXT = 1

121 , ψmAP = 1
11 , η = 0.7,

γ = 0, τ = 4, uthr = 60(%), RSSI ′ = −65 dBm,
∆err. = 0.005%, ∆retr. = 50%.

Location Optimization: The initial recommendation of the
EXT’s placement is mid-way between the locations of user
device at l2 and mAP at l0 in Fig. 1, somewhere close to
location l4. After the initial placement of the EXT, by means
of sensing and perception, ICALO validates the average RSSI
level of the EXT received at the mAP’s location (-70 dBm) and
the RSSI level of the user device at the EXT’s location l4 (-44
dBm). Since the RSSI level of the EXT received at mAP is
below RSSI ′ = −65 dBm, ICALO sends a voice notification
to the user to reposition the EXT to a new location l1, mid-
way between the EXT’s current location, l4, and the mAP’s
location, l0. After re-positioning the EXT to l1, ICALO again
validates the average RSSI level of the EXT received at the
mAP’s location l0 (-56 dBm) and RSSI level of the user device
at the EXT’s current location l1 (-58 dBm). Since the RSSI
levels satisfy the RSSI constraint, ICALO can start searching
for an optimal channel combination for backhaul and fronthaul
links.

Unguided Channel Optimization: Unguided channel opti-
mization relies only on BSmax probabilities without domain
knowledge. That is, when ξ < ε(s), only ρo is considered
when selecting the next action (this is the classic Softmax
exploration). As a consequence, the UG-RL agent requires
a longer searching time to find an optimal configuration
as illustrated in Fig. 8(a), with a high likelihood to apply
channel combinations with poor performance. Thus, the wire-
less system experienced poor performance for a longer time
in comparison with ICALO. Also, to find optimal channel
combinations, UG-RL agent applies far more actions (higher
learning cost) than ICALO, leading to the degradation of user
experience due to many re-connections and delays for re-
association of both EXT’s and user devices. We note here
that the channel combinations with poor performance due to
high level of contention, and/or large errors caused by hidden
nodes, require more time to establish connection between mAP
and EXT, and also between user devices and mAP/EXT. This
time (in range of several to tens of minutes) is referred to
as a dead time in the wireless system, and it increases with
higher channel utilization and/or interference. To reduce the
dead time, a distributed logic at both the EXT and mAP is
added (EXT is not visible to G-RL agent in the cloud) to
reset the system configuration to so far best-known settings. As
such, ICALO has a much smaller probability to visit actions
with poor performance compared with a UG-RL agent.

(a) Instant Reward (UG-RL agent)

(b) Instant Reward (G-RL agent)

Fig. 8: Single-user Scenario

Fig. 9: Multi-user Scenario (G-RL agent)
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2) Guided Channel Optimization for Single-user Scenario:
Guided by the domain knowledge, the G-RL agent used in
ICALO significantly decreases the search time for the optimal
channel configuration as shown in Fig. 8 (b). To maximize
the initial learning space of ICALO, the agent starts with
non-overlapping channels (e.g. channel 3 for backhaul and
channel 8 for fronthaul). After a new configuration is pushed,
ICALO collects a number of sensing samples (4 in our case)
with period T = 4 s before reasoning about applying a new
action. Also, to avoid situations where a collection of a certain
number of sensing samples lasts long, ICALO specifies the
maximal time it will wait for collection as 120 s. Subsequently,
with each new channel action, ICALO sends to the node the
best-known channel action so far. This is necessary to avoid
the channels which don’t allow re-establishment of all links
of a certain node in 30 s. For those channels, ICALO sets
the channel utilization to 1000, to stress poor performance at
those channels. The tested environment includes 61 and 72
non-managed neighbors sensed at mAP’s location and EXT’s
location, respectively. The level of contention is very high for
each channel and most of the channels are highly utilized (see
Table I, which is updated by the perception block with each
new sensing sample). By applying a new action (channel con-
figuration), ICALO acquires knowledge about the utilization
of the current and adjacent channels, and calculates hidden
node and contention node impacts. In that way, ICALO keeps
the average throughput in the wireless system approximately
constant (4 Mbps) and only needs a very short period (T = 40
s) to learn the neighborhood. From T = 40 s, G-RL agent
chooses between two channel combinations (4,10) and (3,7).
After the G-RL agents stabilizes the wireless system, we
add a hidden node at the backhaul at time instant 120 s, to
test ICALO’s responsiveness to a dynamic environment. An
additional AP is placed at location l3 which operates at channel
3 and has an associated active user device at saturated traffic
load. Consequently, the utilization of channel 3 is increased
from 38 to 73. Here, ICALO detected a very high level of
error rate at the mAP, and takes only two iterations to avoid
the hidden node problem as illustrated in Fig. 8(b).

3) Multi-users scenario: In this scenario, we consider only
ICALO (G-RL). There are 2 user devices connected to the
mAP with RSSI levels of -35 dBm and -56 dBm and 2 user
devices connected to EXT with RSSI levels -48 dBm and -58
dBm. All the devices stream a 2K video. As shown in Fig.
9, ICALO performs very well in case with multiple users and
avoids the channels with poor performance. It is worth noting
that the tested environment is very dynamic, and during testing
we observed that ICALO very quickly adapts to changes in
the neighborhood.

VII. CONCLUSION

This paper presented ICALO, a self-optimization scheme
for wireless extenders in a WMN which adopts an AI-driven
learning framework. ICALO optimizes the operating channels
and locations of extenders by striking a balanced trade-off be-
tween their backhaul and fronthaul performance, considering
the impact of uncoordinated neighboring networks, learning

cost and network dynamics. Our results show significant
throughput improvements over several other channel assign-
ment approaches while converging to peak-performance much
faster and with a lower number of actions than a UG-RL. We
also portrayed the resilience of ICALO by demonstrating its
ability to quickly recover from throughput degradation caused
by sudden changes in the network environment. We relate this
performance to the guidance of the reinforcement learning
agent by using domain knowledge to curb unnecessary ex-
ploration while fostering smarter exploitation. We conclude
that ICALO successfully addresses the NP-hard problem of
joint channel assignment and location optimization of WMNs
by guaranteeing low-cost learning and achieving near-optimal
network configurations. The basic idea of the proposed ICALO
framework is validated for a 2-hop network with both single
and multiple stations by considering only the 2.4 GHz band.
In most modern households, a single extender coupled with an
mAP will cover the performance needs of an overwhelming
majority of users. As such, the demonstrated performance of
ICALO will serve as an important marker of the Quality of
Service that can immediately be offered to these users through
home wireless networks. However, as a future work, we aim
to thoroughly evaluate the performance of ICALO in more
complex scenarios such as in WMNs with multiple extenders
with dual-band radios (2.4 GHz and 5 GHz).
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