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Abstract—RF devices can be identified by unique imperfections
embedded in the signals they transmit called RF fingerprints. The
closed set classification of such devices, where the identification
must be made among an authorized set of transmitters, has been
well explored. However, the much more difficult problem of open
set classification, where the classifier needs to reject unauthorized
transmitters while recognizing authorized transmitters, has only
been recently visited. So far, efforts at open set classification have
largely relied on the utilization of signal samples captured from
a known set of unauthorized transmitters to aid the classifier
learn unauthorized transmitter fingerprints. Since acquiring new
transmitters to use as known transmitters is highly expensive,
we propose to use generative deep learning methods to emulate
unauthorized signal samples for the augmentation of training
datasets. We develop two different data augmentation techniques,
one that exploits a limited number of known unauthorized
transmitters and the other that does not require any unauthorized
transmitters. Experiments conducted on a dataset captured from
a WiFi testbed indicate that data augmentation allows for
significant increases in open set classification accuracy, especially
when the authorized set is small.

Index Terms—Transmitter Identification, Deep Learning, Open
set recognition, authorization, physical layer authentication

I. INTRODUCTION

With billions of new Internet of Things (IoT) devices
added each year, the task of securing IoT networks has
become more important by the day. However, traditional
cryptography based authentication systems are typically not
suited for authenticating such devices due to their limited
power and computational constraints. To address this, passive
Physical Layer Authentication (PLA) has been proposed since
it requires little to no work on the part of the transmitter
[1]. Here, the authenticator uses channel state information
and fingerprints due to hardware impairments to identify
transmitters. Recently, research on passive PLA that uses deep
learning techniques has been gaining momentum. Since deep
learning based classifiers tend to extract more salient features,
these approaches have been shown to outperform others which
use handcrafted features, reaching markedly higher accuracy
[2].

Most such authentication systems have been modeled as
closed set classifications, where the classification decision is
one of a known set of authorized transmitters. However, it is
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obvious that such a model is ill-suited for an authentication
system which needs to discriminate among the authorized set
while rejecting unauthorized transmitters—since any unautho-
rized transmitter not included in training would be misclas-
sified as authorized. Therefore, open set classification, which
can detect unseen transmitters, has recently been proposed in
this regard [3] [4].

There are two primary methods in which openset classifi-
cation problems can be solved using deep learning [5]. The
first one is discriminative model-based methods. Here, autho-
rized data (signal samples from authorized transmitters) and
known unauthorized data (signal samples from some known
unauthorized transmitters) may be used to train a specialized
neural network architecture. Subsequently an accompanying
detection method allows for the detection of outliers while
detecting authorized classes. To this end, we have previously
tested architectures like One vs All (OvA) and methods like
OpenMax and demonstrated that, for example, using a higher
number of known unauthorized transmitters during training
leads to better performance [4]. However, in this paper, our
focus is on the second approach to open set classification:
instance-generation based methods [5]. As the name implies,
here generative models are used to synthetically create samples
from the unknown unauthorized data that could be used to
augment the training dataset. Then discriminative model-based
open set methods or even closed set methods could be used
on the augmented training data.

Data augmentation within the umbrella of RF fingerprinting
is not an entirely new concept—for example, in [6] data with
many simulated channel and noise variations were augmented
to train a more channel-resilient RF fingerprinting classifier.
However, to the best of our knowledge, instance-generation
based data augmentation has not been applied in the lit-
erature regarding RF authentication. Yet generative models
and methods have been proposed for data augmentation in
other domains [5]. Inspired by this past work, we adapt some
of these methods to RF fingerprinting while presenting our
own methods. Our contributions include two types of outlier
generation based on the type of information available during
training:

1) Supervised outlier generation: Some signal samples from
a limited number of known unauthorized transmitters are
available during training.
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Fig. 1: System model: R must determine whether the received
signal y originated from an unauthorized transmitter in O,
and if not, from which one of the authorized transmitters in
A. Some unauthorized transmitters K may be known to R.

2) “Blind” outlier generation: Only authorized signal sam-
ples are available during training.

In both cases, the goal is to emulate signal samples from the
set of unauthorized transmitters.

The rest of the paper is organized as follows: we start by
formulating the problem in Section II. Section III discuses
the dataset and evaluation method used for approaches pre-
sented throughout the paper. Supervised outlier generation
is presented in Section IV while Blind outlier generation is
presented in Section V. Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a finite set of authorized transmitters given by
A = {A1, A2, · · · , A|A|} that are authorized to send data to
a receiver R, where |A| is the size of the set A. When a
transmitter T sends a set of symbols x, the signal received
is fT (x). The function fT models the transmitter fingerprint
determined by the variability of its circuits and also includes
the effects of the channel. The authentication problem can be
formulated as shown in Fig. 1: receiver R receives a signal
y from some transmitter T and should determine whether the
transmitter T belongs to the authorized set or not, based on y.
This can be formulated as the following hypothesis testing:

H0 : y = fT (x), T ∈ A
H1 : y = fT (x), T /∈ A

(1)

However, in this paper, we are additionally interested in
classifying the transmitter within the authorized set, in cases

where each authorized transmitter has different privileges. In
such a setting, the open set authorization problem could be
written as

H0 : y = fT (x), T = A1

H1 : y = fT (x), T = A2

· · ·
H|A|−1 : y = fT (x), T = A|A|

H|A| : y = fT (x), T /∈ A

(2)

To improve the outlier detection, an additional set of known
outliers K = {K1,K2, · · · ,K|K|}, where K 6⊂ A, may
be used. So typically during training, a captured set of
signal samples X = {X1, X2, · · · , X|A|} corresponding to
transmitters in A and a similar set of signal samples Y =
{Y1, Y2, · · · , Y|K|} corresponding to transmitters in K will be
used during training to assist the outlier detector to differen-
tiate between authorized and non-authorized transmitters. In
practice, samples from the set K can be obtained by capturing
data from a finite number of non-authorized transmitters.

During supervised outlier generation, the task is to use the
information in Y (and possibly X ) to generate more signal
samples from O, which is the theoretically infinite set of
unauthorized transmitters (K ⊂ O). The task in blind outlier
generation is to use only the information encoded in X to
generate more signal samples from O. The set of such samples
generated from O, using either method, is denoted by Ŷ .

III. DATASET AND EVALUATION METHOD

We introduce the dataset and outlier detector classifer ar-
chitecture for evaluating the proposed approaches.

A. Dataset

The dataset was captured on the Orbit testbed [7]—each
one of the 71 transmitters was one 3 off-the-shelf WiFi
modules (Atheros 5212, 9220, and 9280) and the receiver was
a software defined radio (USRP N210).

Each transmitter was allowed to transmit over Channel 11,
which has a center frequency of 2462 MHz and a bandwidth of
20 MHz, and captures were taken at a rate of 25 Msps for one
second. After the IQ capture was complete, energy detection
was used to detect the start and end of packets and extract
them. Due to WiFi rate control, the number of packets obtained
from each transmitter varied between 200 and 1500 packets
with a mean of 800 packets. From each packet, we used the
first 256 IQ samples, containing the preamble, without any
synchronization or further preprocessing, as the signal sample.

B. Outlier detector architecture and evaluation

In [8], we explored several neural network architectures that
could be used for a problem like Eq. 2 such as DClass and
OvA. In this paper, for our evaluations, we chose to use the
OvA (One-versus-All) architecture, most importantly because
it could be used even when there are no known outliers during
training. Simply put, the OvA architecture consists of a feature
extractor followed by |A| binary classifiers in parallel, where
the i-th binary classifier decides (0 or 1) whether the input



signal is from Ai or not. The feature extractor architecture
used for all experiments conducted in this paper is given in
Fig. 3.
A, K and O will be chosen randomly, subject to the con-

straints specified for each evaluation—however, when compar-
ing a non-augmented dataset vs. the corresponding augmented
dataset, the same A, K and O will be kept. For chosen A, K
and O, the dataset split will be as follows: for training and
validation, we use 70% of the samples belonging to A, and
all the samples belonging K. The shuffled combination of this
data is split into 80% for training and 20% for validation. The
test set contains all samples from O and the remaining 30%
of A. The evaluation metric is the prediction accuracy of the
OvA classifier on this test set.

IV. SUPERVISED OUTLIER GENERATION

The idea behind supervised outlier generation is simple: we
could train a generative model on signal samples collected
from a few known outliers (Y), and use that generative model
to generate more outlier samples. We chose Variational autoen-
coders (VAEs) [9] as our preferred generative model due to
their relative ease of training. A VAE is an unsupervised neural
network architecture that consists of an encoder network E
which transforms the input data into a latent space and a
decoder network D which maps the encoded data back into the
input space. By learning parameters related to the underlying
data distribution, for any standard normal z, it is able to take
D(z) as a sample from that distribution.

The most straightforward approach is to train a VAE on
all the data available in Y . Intuitively, if we then isolate the
decoder D, it should be possible to emulate as many known
outlier samples as we want. To test this approach, we first
created a VAE with the architecture highlighted in Fig. 2 and
performed the following experiment: we pick a fixed set of 10
authorized transmitters A. Then on 5 different occasions, we
pick K randomly from O such that |K| ∈ {5, 10, 15, 20, 25}.
These values for |A| and |K| were picked since we seek to
evaluate the effect of |K| on outlier detection performance as
|A| is kept constant—any value for |A| and any set of values
for |K| not too close together should give similar observations
for what follows. For each such K, a VAE was trained on the
corresponding Y and its decoder was then used to generate
more samples from K. We then train an OvA classifier with
the individually labelled X as authorized and Y and Ŷ as the
outliers. In our experiments it was interesting to note that while
the testing accuracy of the trained OvA as |Ŷ| is increased rises
initially, beyond a certain number of generated samples, there
is no appreciable increase. This makes sense because the finite
set K and the finite number of captured signal samples Y only
expose a certain amount of information about O that could
be exploited by generating more samples from K. Therefore
we fixed |Ŷ| = 7500 and evaluated the OvA testing accuracy
when the training data is augmented with the generated outliers
and compared it against the non-augmented OvA performance.
From Fig. 4a it is clear that when |K| is increased, the effect
of augmentation is greater. While many reasons are possible,

Fig. 2: Neural network architectures used for the standard
VAE and the conditional VAE. The components in blue are
only present in the conditional VAE. Conv(x,y,z) is a 2D
Convolutional layer with x filters of kernel size y and stride
(z, 1). ConvT represents a transposed version of Conv.

.

it is immediately not clear why this trend is observed—so we
experiment further.

Note that when trying to generate samples from K by
training a standard VAE on Y as above, we do not know
from which transmitters in K these generated signals samples
are drawn from. For example, if 1000 samples are generated
and |K| = 5, 800 of those could be from K1 and 200 could
be from K3, or all 1000 could be from K4. To avoid this
disproportionality during the sample generation, we tested
another type of VAE called a conditional VAE or CVAE.
The CVAE is simply an extension on the standard VAE in
which there is a conditional or categorical input to the decoder
indicating the class of the sample to be generated, as is clear
from Fig. 2. This allows us to specify the particular transmitter
from which samples are to be generated after the CVAE is
trained. Similar to the VAE, for each |K| ∈ {5, 10, 15, 20, 25}
we generated 7500 samples but this time, 7500/|K| samples
were generated from each known outlier in K. Then the same
OvA classifier as for the standard VAE was trained—the
testing accuracy observed for different |K| is given in Fig.
4b. We can see that now roughly the same level of accuracy
increase is seen for all |K|—when |K| is large, the probability
that generated samples will be picked from a small subset
of is small, while that same probability is large when |K| is
small. So using a CVAE has an equalizing effect by allowing
generated samples to be proportionately chosen. This is why
we see the augmentation accuracy gap increase with |K| for the
standard VAE while roughly staying the same for the CVAE.
Note that the non-augmented curves in Fig. 4a and Fig. 4b are
different due to the randomness in which K is selected.



Fig. 3: Detailed architecture of the feature extractor (made of
residual blocks with f filters), and a classifier with x outputs.
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(a) Variation of testing accuracy with |K| for VAE
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(b) Variation of testing accuracy with |K| for CVAE

Fig. 4: Variation of testing accuracy with |K| for VAE and
CVAE.

V. BLIND OUTLIER GENERATION

While supervised outlier generation is somewhat straight-
forward, it requires the need to acquire additional hardware
in the form of known unauthorized transmitters. This is an
expensive task that becomes infeasible in many situations. So
a more important, and more challenging task is to use just the
information available in X to emulate signal samples from O:
blind outlier generation.

A. Ellipsoisal method

Our approach to this task is rooted in visualizing the
authorized set in some latent space, which is essentially a
dimensionality-reduced space. Any signal x ∈ X is typically
a high-dimensional vector (256 × 2 = 512-dimensional in
the dataset above), so this dimensionality reduction allows for
correlated features to be merged and the dimensionality of
the vector space to be made tractable. Here, we will use an
autoencoder to map the authorized signal samples to a latent
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Fig. 5: Ellipsoidal method: Using an encoder to map autho-
rized samples xi to the latent space zi. Random points sampled
in the shell are mapped using the decoder to recover generated
outlier samples yj

space (as will become evident, a VAE is unnecessary as we
do not require any sampling in this case). Since the size of the
encoder output is usually designed to be much smaller than
the size of the input, the encoder essentially extracts a latent
space representation of the input.

This process is visually depicted by Fig. 5 — we start off
with some authorized signal samples X = {x1, x2, ..., xm}
that we map to their corresponding latent space representations
ZX = {z1, z2, ..., zm} using the encoder, i.e. zi = E(xi).
Note that the region in latent space occupied by ZX could be
some arbitrary shape. The key insight behind our approach to
blind outlier generation is to conjecture that in latent space:
i) outliers are still wireless signals so they should be “close”
to authorized signal samples within the latent space; and ii)
outliers are clearly not authorized signals so they should be
clearly separated from the region of space occupied by the
authorized signals.

Now assume we were able to find the minimum volume



ellipsoid E enclosing ZX . Then, outlier signals should be
located in some region of the latent space that is separate
from but not too far away from the region occupied by the
authorized signals. This suggests that if we take some shell of
uniform thickness δ around E , points within this region should
correspond to outlier signals.

To generate outlier samples in the signal space, we could
simply generate random points within the shell and use the
decoder D to map them into their signal space counterparts.
This process is visualized in Fig. 5.

To practically apply this method, we first need a method to
find the minimum volume ellipsoid E . We can write

E = {z ∈ ZX | ‖Az + b‖2 ≤ 1} (3)

i.e. E is the inverse image of the Euclidean unit ball under an
affine mapping, and the variables are A ∈ Rn×n and b ∈ Rn

where A could be assumed to be positive definite without loss
of generality.

Since the volume of E is proportional to detA−1, this can
be formulated as the following convex optimization problem,
which can be solved numerically

minimizeA∈Sn,b∈Rn log detA−1

subject to ‖Azi + b‖2 ≤ 1 i = 1, . . . ,m
(4)

To evaluate this method, we performed the following ex-
periment. 30 transmitters were first selected from the 71-
transmitters in the dataset as the set of outliers (|O| = 30).
Then for |A| ∈ {5, 10, 15, 20, 25}, a set of |A| transmitters
were randomly selected as the authorized set A in 5 separate
occasions. Note that similar to the VAE methods in Section
IV, even though it is technically possible to use this method
to generate an infinite number of outliers, practically we
see almost no improvement in performance after a certain
number of outlier samples are generated. So as we did in
Section IV, |Ŷ| = 7500 outlier samples were generated and
subsequently used to augment the training dataset and train an
OvA classifier. The testing accuracy corresponding to outlier
samples that were generated for different values of δ for
|A| = 5 is given in Fig. 6a. We can clearly see that there
is an ideal value for the shell thickness δ, that is not too small
and not too large, when the generated samples represent the
best outliers. To generate Fig. 6b, the same δ that was ideal for
|A| = 5 was used for all |A| when generating Ŷ . In Fig. 6b,
we can see that especially when |A| is low, significant gains
(>15%) in testing accuracy could be obtained by augmenting
the dataset.

B. Optimization method

The ellipsoidal method provided a visually intuitive method
for outlier generation. However, it required the empirical
tuning of a parameter δ. So we try to approach the same
problem with a similar intuition about outlier signals but now
formulate the constraints of the problem differently. As we had
previously remarked, the outlier signals should correspond to
wireless signals. So if D(z) is an outlier, the encoding E(x)
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(a) Sweet spot for δ: Variation of testing accuracy as thickness of the
ellipsoid shell is tuned for |A| = 5
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(b) Variation of testing accuracy against no. of authorized transmitters

Fig. 6: The results of using the ellipsoidal method to generate
outliers

of an authorized signal x should be close to z in latent space.
For D(z) to be an outlier, z should satisfy,

minimizez ‖E(x)− z‖
subject to D(z) /∈ A (5)

Here, || · || could be some norm measure like the Euclidean
distance. However the constraint D(z) /∈ A is less straight-
forward. To solve this problem and find some optimal z for
some input x, we need to integrate this constraint numerically.
Authors in [10] suggested using a closed set classifier CA
with |A| outputs, which has learned to differentiate the known
classes, as a judge of whether D(z) is an outlier or not. They
argued that if D(z) is an outlier, the logits of the classifier
prediction CA(D(z))i, should be low for all classes i. Inspired
by this, we suggest using a closed set classifier CA+1 with
|A| + 1 outputs as the judge of whether D(z) is an outlier
instead. With this definition, an ideal outlier would result
in a softmax output of

[
0 0 . . . 0 1

]
meaning that we

can formulate the constraint in terms of a loss function and
integrate in to the objective function:

z∗ = min
z
‖E(x)−z‖+ loss

([
0 . . . 0 1

]
, CA+1(D(z))

)
(6)

Using an |A|+1 output classifier as the judge instead of an |A|
output classifier has one added benefit—once we have found
some set of initial outliers O(0), we can re-train the initial
judge C(0)

A+1 using those outliers as unauthorized samples to
get a better judge C(1)

A+1 that could be used in a subsequent
iteration to generate even better outliers. Note that during
its initial training CA+1 does not have training samples for
the |A| + 1-th class, so this process should help it become a
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Fig. 7: Variation of testing accuracy against no. of authorized
transmitters for the optimization method

better judge as iterations progress. However, due to the self-
supervised nature of this procedure, it could be sensitive to the
quality of initial training of C(0)

A+1. This method is highlighted
in Algorithm 1 in detail.

Algorithm 1: Blind outlier generation
Input : Set of authorized signals X;
Output : Samples from the set of outliers O;

1 Train encoder network E(x), decoder network D(z) and
|A|+ 1 closed set classifier C(0)

A+1;
2 for i ∈ {0, 1, . . . , N − 1} do
3 initialize O(i) = ∅;
4 for x ∈ X do
5 z∗ = minz ‖z − E(x)‖+

loss
([

0 0 . . . 0 1
]
, C

(i)
A+1(D(z))

)
;

6 O(i) = O(i) ∪ {D(z∗)}
7 end
8 C

(i+1)
A+1 = train(C(i)

A+1,X ∪O
(i));

9 end
10 O = O(N−1);

To evaluate this approach, we follow a similar approach
to the ellipsoidal method. The architectures for the E and D
networks are the same as that in Fig. 2, while cross-entropy
was used as the loss function in Eq. 6. The results in Fig.
7 are almost identical to that of the ellipsoidal method in
Fig. 6b, except that we are able to see an improvement in
testing accuracy even at |A| = 15, which was not seen with
the ellipsoidal method. The crucial benefit is that there is no
tuning of an extra hyperparamter (δ) necessary in this case.
However, the ellipsoidal method is still a valid method to
consider if proper tuning of δ can be done, as solving Eq.
6 through gradient descent is computationally expensive. For
example, generating 103 outlier samples with the optimization
method took 30× the time it took for the ellipsoidal method.
Note that the non-augmented curves in Fig. 6b and Fig. 7 are
slightly different due to the randomness in which A is selected.

One reason for the degradation in the augmentation accuracy
gap in Fig. 7 as |A| increases is that the outlier detection
accuracy of CA+1 decreases as |A| increases, due to there
being no supervision for the outliers during the initial training
of CA+1 (it is an |A|+ 1-class classifier). So CA+1 becomes
worse at judging the constraint D(z) /∈ A in Eq. 5, affecting
the quality of the outliers thereby produced.

VI. CONCLUSION

In this paper, we considered the instance-generation based
method for the open set classification problem in RF fin-
gerprinting. Outlier instances were generated in two primary
settings according to the information used during training;
supervised outlier generation, where signal samples from a
limited number of known outliers are used to generate more
outlier samples; and blind outlier generation where outlier
samples must be generated by using only authorized samples
available during training. For supervised outlier generation, we
considered VAEs and CVAEs and showed that CVAEs allows
for a more uniform performance improvement when |K| is
varied by enabling the proportionate generation of outliers
from each known outlier in K. For blind outlier generation
we first presented the ellipsoidal method, which was a geo-
metrically intuitive way. Although it gave satisfactory results,
it required the tuning of an extra hyperparameter. So another
optimization-based method was presented that achieved the
same-level of results but did not require any tuning. In both
cases, significant performance improvements were seen for
small |A|. This provides evidence that generative outlier
augmentation can replace the need to acquire transmitters as
known outliers when building RF authentication systems.
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