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Abstract—In this work, we develop a framework that jointly
decides on the optimal location of wireless extenders1 and the
channel configuration of wireless extenders and access points
(APs) in a Wireless Mesh Network (WMN). Artificial Intelligence
(AI) is adopted to support network autonomy and to capture
insights on system and environment evolution. We propose a Self-
X (self-optimizing and self-learning) framework that encapsulates
both environment and intelligent agent to reach optimal operation
through sensing, perception, reasoning and learning, in a truly
autonomous fashion. The agent derives adequate knowledge
from previous actions, improving the quality of future decisions.
Extensive simulations are run to validate its fast convergence,
improved throughput and resilience to dynamic interference
conditions.

Index Terms—Artificial intelligence, Machine Learning, Wire-
less networks, Optimization, Self-X design

I. INTRODUCTION

Wireless Self-organizing Networks (Wi-SONs) have been
proposed to proactively address different optimization chal-
lenges in dense wireless networks such as channel assign-
ment, coverage, user control etc. [1] – [3]. In essence, Wi-
SONs monitor network performance and calculate an optimal
configuration to determine a new recommendation policy for
single or clustered APs. This method, however, is deemed
sub-optimal as it overlooks both internal and external network
dependencies2. While most efforts in SON literature [1], [3],
[4] have been directed to define cost functions with determinis-
tic (rule-based) optimization schemes, the above dependencies
have to be explicitly addressed. In contrast, Artificial Intelli-
gence (AI) with Machine Learning (ML) techniques should
be considered to enable wireless systems with learning and
sophisticated decision-making [5].

The reinforcement learning scheme in [6]—designed for
sensor networks—adopted random exploration and simple
reward exploitation. This can be sufficient for the considered
radio and power selection problem under the foreseen slow
dynamics. However, channel assignment and learning in multi-
radio WMNs comprise more states and dynamics which slow
down the convergence of purely random exploration, and

†Now affiliated with University of Peradeniya, Sri Lanka.
1Wireless extenders are wireless devices used to extend the coverage area

of a main access point; they are also called mesh points, since the main access
point refers to a mesh gateway in a WMN.

2The internal dependency refers to the relation between configurations of
the AP-extender-user set. The external dependency appears in multi-operator
deployments due to the stochastic changes of neighbor APs adopting the same
or overlapping channels.

impact the optimality of simple reward functions that do
not exploit problem structure. In [7], an Adaptive Dynamic
Channel Allocation (ADCA) algorithm was proposed to pick
the configuration that maximizes throughput and minimizes
delay. Each pair of neighboring nodes negotiates to select a
common link channel that maximizes throughput. However,
the algorithm might perform sub-optimally in the case of
saturated traffic and also overlooks neighboring non-managed
interference (external interference).

Finally, there are optimization techniques adopting graph
coloring, integer linear programming (ILP) or meta-heuristic
techniques [8], [9]. The primary drawback of graph-coloring
is its sensitivity to centralized knowledge, which usually
fails to capture the granularity of inter-AP interference in
non-managed scenarios. Although ILP techniques can reach
globally optimal channel assignments, they fail to obtain real-
time solutions in dynamic environments, and hence is not re-
silient. On the contrary, meta-heuristic techniques like Genetic
Algorithm [9] and Tabu search [8] can provide near-optimal
channel assignments that cope with dynamic environments,
but their performance has not been tested in non-managed
environments. CLICA [15] provides a channel assignment that
guarantees connectivity and low inter-channel interference, but
is also not designed to handle external interference in non-
managed environments.

In this work, an AI-framework design is presented to
support the network with autonomy to capture insights on
system and environment evolution. We introduce heuristics
to achieve near-optimal channel and location configurations,
and its performance is validated through extensive packet-level
simulations. Our main contributions are as follows:

1) We propose an AI-driven Self-X framework called
Intelligent Channel Assignment and Location Optimization
(ICALO) that comprises both environment and intelligent
agent. The intelligent agent perceives the environment through
network parameters and stores them in a knowledge base (KB)
that guides learning and decision making. On the contrary,
existing optimization strategies do not leverage the observed
impact of previous actions while deriving future decisions.

2) A guided reinforcement learning (G-RL) approach is
proposed with embedded domain knowledge to achieve user-
aware self-optimization. The agent strikes a balance between
exploration when learning has low cost, and exploitation when
network performance is critical. Both perceived network states
and the KB are used either to select or assess new optimal
configurations and retain them in the KB. The agent is aware

978-1-5386-4920-6/18/$31.00 ©2018 IEEE



of the learning cost that interrupts user connectivity, and
thus exploits spectral correlation to transfer knowledge among
matching configurations.

II. NETWORK MODEL

We model the network as a directed acyclic graph G =
(V,E), where V is the set of nodes and E is the set of bidirec-
tional links (edges) between them. vi ∈ V represents either the
gateway master Access Point (mAP), extender (EXT) or user
device, where v0 refers to the mAP, v1, . . . , vM represent the
extenders, and vM+1, . . . , vM+U are user devices. We assume
N available channels and a set of possible locations L for
deploying extenders. We denote the set of radio interfaces
for each node vi by Di, and the set of channels associated
to radio-interfaces by Ci. Each link eij ∈ E comprises of
two nodes vi and vj , where vj is connected to vi and the
latter provides the next hop communication to the mAP. Both
nodes are in the transmission range of each other and they
have at least one common channel assigned to their interfaces
(i.e. Ci ∩ Cj ̸= ∅). We define hij as the channel associated
with eij and thus, the link can be represented with the triple
eij = {vi, vj , hij}.

A. System Variables

The system variables of our implementation model are
described in the following.

1) Location-specific RSSI: The Received Signal Strength
Indicator (RSSI) at receiver node vj at location lj from sink
node vi, RSSI

(lj)
ij represents a measured received signal

strength in dBm of beacon frames received on the channel
(defined as dot11BeaconRssi [10]).

2) Channel Utilization: The utilization u
(lj)
hij

for chan-

nel hij at location lj ∈ L is calculated as u
(lj)
hij

=
CBtime(t+τ)−CBtime(t)

τ × 100, where CBtime(·) is the channel
busy time in milliseconds provided by the Clear Channel
Assessment stats counters.

3) End-to-end Throughput: Practically, Rk—the end-to-end
throughput at user vk—can be estimated as a user goodput
based on transmitted and received bytes by the user within a
measurement period ∆t as Rk = (TXBytes+RXBytes)×8

∆t , where
TXBytes and RXBytes, respectively, denote the total number
of bytes transmitted and received.

B. Problem Formulation

We define the objective function of our approach as the
total end-to-end throughput of all user devices, written as
maxC,L

∑M+U
k=M+1Rk, where the search is done across a

set of channels C =
∪

∀i∈[0,M ] Ci and a set of locations
L = {li|i = [1,M ]}. Optimization of the objective function is
done under the following constraints:

(a) Finite set of available channels – only N channels are
available from which one could be assigned to a radio in a
given node.

(b) Radio constraints – the number of channels assigned to
a node cannot exceed the number of radios on that node. That
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Fig. 1: AI-driven self-optimization framework.

is ∀vi ∈ V, |Ci| ≤ |Di|, which means that the same channel
can be assigned to different radios of vi.

(c) Connectivity – two adjacent nodes vi and vj must have
at least one channel in common Ci ∩ Cj ̸= ∅.

Below we present a heuristic algorithm with guided learning
to solve the problem defined by the above objective function.

III. SELF-OPTIMIZATION FRAMEWORK DESIGN

The overall architecture of the proposed AI framework is
summarized in Fig. 1, and comprises the Environment, the
KB and their interaction with the Intelligent agent [12] through
sensing, perception and reinforcement-learning (RL) [13]. The
agent interacts with the environment by sensing the current
state and then provides actions through reinforcement learning.

A. Sensing

In the sensing stage, the values of physical parameters used
in the Perception stage may be collected from the mAP and
EXTs through the TR-98/181 protocol for remote management
[11]. This information is periodically collected from each node
with a certain period τ in milliseconds.

B. Perception

The perception phase translates the sensed information
from each node vi into performance indicators (i.e. system
variables) that identify the network state. The performance
indicators are calculated for each radio d ∈ Di of node vi ∈
V, i ∈ [0,M ] based on two successive sensing samples. One
such indicator is the channel utilization (ud) of the channel
assigned to radio d.

By means of real-time network monitoring, the perception
component is capable of detecting when the current configu-
ration becomes sub-optimal, and sending a signal to the G-
RL agent (defined below) to evaluate the current state of the
network.

C. Reinforcement Learning

The guided RL (G-RL) agent utilizes Q-learning to select
the optimal action at each state based on stored reward values
(referred to as Q-values). In essence, the G-RL agent considers
that each node {vi|∀i ∈ [0,M ]} has its own states and
corresponding actions in that state, while the rewards are
derived on the system level. The states, actions and rewards
for each node vi ∈ V, i ∈ [0,M ] are defined as follows:



States (S): Besides channels optimization, the G-RL agent
aims to place each node vi at an optimal location. Thus, the
states s ∈ S of each node will refer to its location li. Each
node vi has |L| possible locations for deployment and hence
|L| possible states.

Actions (A): The G-RL agent takes two types of actions:
channel configuration A(c), and EXT repositioning A(l), with
action set A(s) = A(c) ∪ A(l). Since each node {vi|∀i ∈
[0,M ]} is equipped with Di radios, we define channel con-
figuration actions for that node as the set of all possible
combinations of the radios, where |A(c)| = N |Di|. On the
other hand, each repositioning action a ∈ A(l) changes the
location of node vi and results in a state transition.

Reward (R): The instantaneous reward at time instant t
in the state s for a selected action a at node vi is given
by rt(s, a, vi) =

∑M+U
k=M+1Rk. We define the reward at the

network level because applying an action a at node vi impacts
the performance of the whole network. In Q-learning, the
cumulative reward Qt(s, a, vi) is calculated using the previous
Q-value and the instantaneous reward as given by{
Qt(s, a, vi) := Qt(s, a, vi) + η∆(s, a)

∆(s, a) = rt(s, a, vi) + γmaxaQt+1(s
′, a)−Qt(s, a)

(1)

where Qt(s, a) is the cumulative reward at state s when
action a is applied at time t, carrying the system to state s′

[13]. Parameters η and γ, respectively, are the learning factor
and discount rate, both with values in [0, 1]. η controls the
convergence speed of the learning and its value is gradually
decreased in time to achieve convergence. The discount rate,
γ, is used to weight the near-term rewards. Specifically, as γ
approaches 1, the weight of future rewards is increased.

Policy (π): The selection of action a during a certain state
s is governed by a policy π(a|s). A policy that maximizes
the cumulative reward Qt(·) is denoted as π∗. Finding the
optimal trade-off between exploration and exploitation is very
challenging while deriving the policy, as it impacts both the
learning cost and convergence rate [13].

D. Knowledge Base

The knowledge base stores three types of tables for each
node vi, i ∈ [0,M ].

Perception table: For each radio-interface d ∈ Di, this table
stores all the next hop nodes, the used channel hd of each
radio, and the channel utilization denoted by ud.

Q-table: This table saves the Q-values for each possible
action a in state s calculated by Eq. 1.

Channel-Location table: The channel utilization of all avail-
able channels N at all candidate locations L is kept, updated
at each time slot.

With such a design of the KB, the G-RL agent is aware of
the network topology and the current state of the system.

IV. GUIDED RL AGENT DESIGN

The RL agent is considered as both a learner and a decision
maker. Thus, the agent has to balance between exploring the
environment to gain more information, and exploiting the
KB by picking decisions with a high likelihood to reach the

optimal state. While the user experience during such learning
and decision-making processes remains a priority, the RL
agent has to be guided by domain experience to minimize the
learning cost. To that end, problem-specific knowledge is used
instead of random exploitation and exploration, to provide a
user-aware decision at the right time. The agent is aware of
the following domain knowledge:
Spectral Correlation: Overlapping channels in a Wi-Fi system3

will typically have similar utilization factors since a given
channel can be sensed busy due to transmission on the same
or an overlapping channel. Thus, the exploration stage should
pick non-overlapping channels, while overlapping channels are
visited through exploitation.
Spatial Correlation: A Wi-Fi system that is suffering from
a coverage problem typically cannot be optimized by re-
configuring the channels, and thus prompts a change in the
location of nodes (i.e. re-positioning EXTs). As such, distin-
guishing the coverage problem from contention and interfer-
ence will help the agent to exclude channel re-configuration
from the set of possible actions, and thus accelerate the
learning process.

The main stages of ICALO are detailed as follows:

A. Selecting the Type of Action

Using perception data, the agent monitors the system perfor-
mance by checking the changes in contention, interference and
coverage levels at the current extender location. In particular,
the RSSI value on an EXT’s backhaul—connecting EXT to
mAP—is assessed versus a minimal threshold RSSI ′ that
achieves the target signal quality at the extender if the channel
is optimized. In the case of poor coverage, channel exploration
at such a location is unnecessary and thus a repositioning
action must be selected. The new location is calculated as the
midway between the current position of the extender and the
next hop towards the mAP. If this location was visited before,
then a random distance is added to the calculated midway
location to provide exploration. The new location is stored
in the channel-location table with the corresponding channel
utilization of the last channel configuration.

In case of a high signal level, i.e. no coverage problem, the
agent should explore and exploit using the channel configura-
tion actions until no improvement is observed, and then a new
location is selected.

B. Zero-Cost Knowledge-Driven Exploration

The second policy performs greedy exploration, yet with
zero learning cost, since it is followed when 1) no users are
associated or 2) the connected users are not requesting any
traffic. In particular, the agent will pick a channel configuration
action, compute its reward and store the cumulative reward in
the Q-table to maximize the gained knowledge. As such, for
every possible action a that is not applied before (i.e. with
zero reward value in Q-table), the total Euclidean distance to
all previously visited actions i ∈ I , is calculated by βa as a

3Here, we consider 2.4 GHz band, but overlapping in 5 GHz band is
observed by usage of dynamic channel bandwidth (20, 40, 80 and 160 MHz).



sum of Euclidean distances between action a and those actions
in I . i.e. βa =

∑I
i=1

√∑D
d=1(ca,d − ci,d)2, where ca,d is the

channel assigned to radio d in action a. The optimal action,
from an exploration perspective, is the one with maximum βa.

In the case that all actions are visited (i.e. no zero entries in
the Q-table), a random action is picked from the Q-table using
a uniform distribution. This exploration process is repeated
for every node {vi|∀i ∈ [0,M ]} until a connection or traffic
request is received from a user device. By doing so, the G-
RL agent accelerates the learning process of its environment
without the degradation of user experience. After the agent
applies this exploration action, the corresponding Q-value is
updated in the KB, and the channel configuration is switched
back to the former value.

C. Modified Basic Soft Max: Exploiting Spectral Correlation

In the case of perceiving interference or contention prob-
lems, the third policy is triggered. In essence, the third policy
is defined based on Basic Softmax (BSmax) combined with
Value-Difference Based Exploration (VDBE Softmax) [14],
spectral correlation and the KB.

π(s) =

{
Modified BSmax policy ξ < ε(s)
argmaxa∈A(s)Q(s, a) otherwise,

(2)

where ξ is a uniform random number over [0, 1], and ε(s) is
a state-dependent exploration probability. In essence, a high
value of ε(s) enables the agent to perform guided exploration,
while a low value triggers exploitation by picking the action
with maximum cumulative reward (i.e. Q-value).

1) Exploration Probability ε(s): The state-dependent ex-
ploration probability ε(s) is calculated iteratively as follows: εt+1(s) = ψ(s)f(s, a, σ) + [1− ψ(s)]εt(s),

f(s, a, σ) = 1−e
−|η∆(s,a)|

σ

1+e
−|η∆(s,a)|

σ

(3)

where σ and ψ ∈ [0, 1], respectively, denote a positive constant
called inverse sensitivity and the influence of the selected
action on ε(s). A reasonable setting for ψ(s) is the inverse of
the number of actions in the current state, ψ(s) = 1

|A(s)| , since
all actions should contribute equally to ε(s). The parameter
σ influences ε(s) in such a way that low values allow high
exploration even at small Q-value changes; high values of
σ cause high levels of exploration only when the Q-value
changes are large [14].

2) Action Selection: In the case of ξ < ε(s), the G-RL
agent is in exploration phase. The exploration phase takes five
steps to pick a new action. First, the G-RL agent calculates for
each a ∈ A(s), the action selection probability ρ(st = s, at =
a, vi) = min{ρo(s, a, vi), ρu(s, a, vi)} by using the BS-
max probability ρo(s, a, vi) and the environment probability
ρu(s, a, vi). The latter probability takes into account channel
diversity, hidden node impact and contention impact caused
by channel utilization and overlapping channels. ρo(s, a, vi)
is determined using a Boltzmann distribution ρo(s, a, vi) =

e
Q(s,a)

T /
∑

b∈A(s) e
Q(s,b,vi)

T , where T is a positive parame-
ter called temperature. High temperatures cause all actions

to be nearly equiprobable (more exploration), whereas low
temperatures cause greedy action selections (more exploita-
tion). ρu(s, a, vi) is determined as ρu(s, a, vi) = CD

UI+HI+CI ,
where CD denotes the impact of channel diversity given
as CD = 1 +

∑
d∈Di

∑
d′∈Di,d ̸=d′ |hd − hd′ | so that the

action with the same channel tuned on all radio interfaces
has the lowest probability. UI denotes the impact of channel
utilization on the action given as UI =

∑
d∈Di

ulihd
. HI

denotes the impact of hidden nodes and is defined as the
difference between channel utilization observed on both sides
of links that contains node vi, multiplied by a factor 100:
HI =

∑
j,eij∈E |ulihij

− u
lj
hij

| × 100. Finally, CI denotes
the impact of contention from overlapping channels given as

CI =
∑

d∈Di

∑
h∈N,|h−hd|65,h̸=hd

(5−|h−hd|)u
(li)

h

50 . The second
step is finding the maximal probability ρmax = max(ρ) and
on basis of it calculating the minimal allowed probability as
ρmin = 0.9× ρmax.

In the third step, the G-RL agent finds all actions
A(s)′ for which ρ(s, a, vi) > ρmin. Afterwards, the
G-RL agent calculates κa′ for each a′ ∈ A′

s as

κa′ =

(
1 +

∑
d∈Di

∑
d′∈Di,d̸=d′ |hd,new − hd′,new|

)
×√∑

d∈Di
(hd,current − hd,new)2. The first factor denotes the

channel diversity of the new action, and the second denotes
Euclidean distance from the current applied action at node vi.
If the applied action does not satisfy perception thresholds,
then it is highly likely that the actions with low Euclidean
distance behave in the same way. However, the G-RL agent
gives a higher probability to actions that have a higher Eu-
clidean distance from the currently applied action. In the last
step, the G-RL agent picks the action a∗ that has the highest
κ value.

D. Decision Making - Control Stage

After a new action is found, ICALO checks whether it
knows anything about this action, i.e. whether the Q-value
for this action is different from zero. In case that the Q-value
is equal to zero, ICALO will apply the new action. Otherwise,
it checks whether the Q-value of the new action is 15%
higher than the Q-value of the currently applied action. This is
because it is not worth applying a new action if it brings only
a small improvement. By controlling the execution of actions
in such a way, ICALO alleviates the issue of unnecessary
network instabilities.

V. PERFORMANCE EVALUATION

To evaluate the proposed framework, we use the IEEE
802.11 compliant discrete-event network simulator ns-3. We
consider scenarios where there is the mAP in conjunction
with a single EXT and a variable number of client devices.
The EXT is modeled as a node that has two radios—one,
an adhoc mode interface that is used to establish backhaul
communication with the mAP, and the second, an AP mode
interface that is used to allow client devices to associate.
The finite time required to relocate extenders in practice is
not considered as it would have no qualitative impact on the



subsequent test results—in practice, this could run anywhere
from a few seconds to a few minutes.

All subsequent tests were carried out with all the radios
operating on the 2.4 GHz band and a channel width of 20
MHz. Packet size is set to 1000 bytes and transmission power
of all radios is 12 dBm. The network area considered was 20
m × 10 m. We may consider it as an apartment of length 20
m and width 10 m, consisting of 8 rooms as given in Fig. 2(a).

In every test, we transmit a Constant Bit Rate (CBR) UDP
data stream of 5 Mbps from the mAP to each of the client
devices, and the ICALO parameters are set as: εEXT (0) = 1,
εmAP (0) = 1, T = 50, σ = 100, ψEXT = 1

121 , ψmAP = 1
11 ,

η = 0.7, γ = 0, τ = 2, uthr = 60(%), RSSI ′ = −60 dBm.

A. Speed of convergence to steady-state throughput

To demonstrate ICALO’s speed of convergence to the
steady-state throughput, we consider a family of five living in
the apartment, as visualized in Fig. 2(a). Then we introduce a
single external (non-managed) node to act as external interfer-
ence to our network and conduct 50 independent tests where
the EXT is placed at a random location within the apartment
in each test. The fronthaul (FH) and backhaul (BH) channels
of the EXT is set to 3 and 7, respectively, while the external
AP is in channel 3. A plot of the Cumulative Distribution
Function (CDF) of the convergence times so obtained is given
in Fig. 2(b). From this, we can observe that for 90% of tests,
the convergence time is less than 36 s. All tests converged
within 43 s. The mean convergence time was 23.6 s and
the standard deviation was 7.9 s. Analysis of configuration
changes (location changes plus channel changes) until steady-
state revealed a mean number of configuration changes of 9.4
and a standard deviation of 2.5.

B. Comparison of steady-state throughput to state-of-the-art
schemes

In this section, we compare the steady-state throughput
of ICALO with that of three other channel assignment
approaches—namely single channel assignment, Common
Channel Assignment (CCA) [16] and Connected Low Inter-
ference Channel Assignment (CLICA) [15]. In single channel
assignment, we consider the channel that produced the highest
throughput. In CCA, we assign a random couple of orthogonal
channels to the extender’s FH and BH in each test. In CLICA,
we consider the physical model presented in [15].

We conduct two similar experiments. In Experiment 1,
there are two people in the dining room and one each in the
living room, the storeroom and the bathroom (blue pentagons).
Four external APs are introduced outside the apartment with
operating channels of 8, 4, 1 and 2 as indicated by Fig. 3(a).
The BH and FH channels of the EXT are set to 2 and 5,
respectively, and the EXT is placed at 50 random locations
within the apartment; for each such location, the system is
allowed to reach a steady-state. The CDF of the steady-state
throughput for each algorithm is plotted in Fig. 3(b).

As expected, single channel assignment has the worst over-
all performance. CCA performs much better as it eliminates
(in our tests) inter-channel interference by choosing orthogonal

channels. However, even in this case, it has zero sense of ex-
ternal interference and is inferior to CLICA. CLICA performs
better than both the first two approaches, and in some cases,
matches the performance of ICALO. But any single formula
(as used in CLICA to estimate channel conflicts) is unlikely
to fully capture both external and internal interference effects
accurately. This is where the exploratory phase of ICALO
comes into effect and results in increased performance.

In Experiment 2, we follow the same procedure except that
the client devices are relocated to locations denoted by green
triangles and the channels of the external APs are changed to
9, 1, 3 and 7 as shown in Fig. 3(a). Also, the FH and BH
channels of the EXT, respectively, are changed to 3 and 7.
The corresponding results are shown in Fig. 5. It can be seen
that the same general trend as in Fig. 3(b) is present here as
well.

C. Resilience of ICALO to dynamic network conditions

To verify the ability of CLICA to recover from the effects
of dynamic network conditions, we simulate the scenario
illustrated by Fig. 4(a): starting with AP1 activated, remove
and activate each of the APs, {AP1, AP2, AP3, AP4} one
by one, pausing for the system to reach a steady-state before
removing the current AP and activating the next. Continuing
in this order, finally only AP4 is left activated. AP1, AP2, AP3
and AP4 transmit at channels 3, 10, 4 and 8, respectively.

The per-user throughput variation versus time for this sce-
nario is given in Fig. 4(b). The moments at which the system
reaches the steady-state is marked by dot-dashed lines (green)
and the moments at which the current external AP is removed
and the next one is activated are marked by dashed lines (red).

It can be seen clearly that the network reaches near-optimal
throughput at each stage after successfully recovering from
the decline in throughput due to a sudden change in external
interference conditions. Note also that successive convergence
times decrease as 28 s, 16 s, 12.5 s and 10 s. This reflects the
effect of the growing knowledge base. Following this pattern,
as the system evolves, we can ideally expect ICALO to make
optimal decisions with little lag.

VI. CONCLUSION AND FUTURE WORKS

This paper presented ICALO, a self-optimization scheme for
wireless extenders in a WMN which adopts an AI-driven learn-
ing framework. Our results show significant throughput im-
provements over several other channel assignment approaches
while converging to peak-performance much faster and with
a lower number of actions than an unguided RL approach.
We also portrayed the resilience of ICALO by demonstrating
its ability to quickly recover from throughput degradation
caused by sudden changes in the network environment. We
relate this performance to the guidance of the reinforcement
learning agent by using domain knowledge, to curb unnec-
essary exploration while fostering smarter exploitation. We
conclude that ICALO successfully addresses the problem of
joint channel assignment and location optimization of WMNs
by guaranteeing low-cost learning and achieving near-optimal
network configurations.
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The basic idea of the proposed ICALO framework is
validated for a 2-hop network with multiple stations by consid-
ering only the 2.4 GHz band. However, as a future work, we
aim to thoroughly evaluate the performance of ICALO in more
complex scenarios such as in WMNs with multiple extenders
with dual-band radios (2.4 GHz and 5 GHz); furthermore, the
authors also intend to improve the scalability of ICALO.
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